Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Biomedical Image Data Types and Processing

  • Sameer AntaniEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_39


Data types: Image, Video, Pixel, Voxel, Frame; Conceptual data types: Pixel, Point, Edge, Volume, Region of interest, Shape, Color, Texture, Feature; Format: Joint photographic experts group (JPEG), Digital imaging and communications in medicine (DICOM), JPEG2000; Imaging Technique: X-Ray, Magnetic resonance imaging (MRI), Computerized tomography (CT), Ultrasound, Positron emission tomography (PET), Nuclear magnetic resonance (NMR), Microscopy, Single photon emission computerized tomography (SPECT), Fluoroscopy; Image processing: Compression, Wavelet compression, Functional mapping, Image reconstruction, 2D image processing, Texture analysis, Edge detection, 3D image processing, Surface detection, Image content analysis; Storage and retrieval: Image databases, Content-based image retrieval (CBIR), Visual similarity, Feature indexing, Multimedia information retrieval


The entry term describes biomedical image types (X-Ray, CT, MR, PET) stored in a particular format...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Beutel J, Kundel HL, Van Metter RL, editors. Handbook of medical imaging, vols. 1, 2, and 3. Bellingham: SPIE Press.Google Scholar
  2. 2.
    Samet H. Foundations of multidimensional and metric data structures. San Francisco: Morgan Kaufman; 2006.zbMATHGoogle Scholar
  3. 3.
    Demner-Fushman D, Antani SK, Simpson M, Thoma GR. Design and development of a multimodal biomedical information retrieval system. J Comput Sci Eng. 2012;6(2):168–77.CrossRefGoogle Scholar
  4. 4.
    Joint Photographic Experts Group (JPEG). http://www.jpeg.org/. American Medical Information Association; 2007. p. 826–30.
  5. 5.
    Gonzales RC, Woods RE, editors. Digital image processing. 2nd ed. Upper Saddle River: Prentice Hall.Google Scholar
  6. 6.
    Sonka M, Hlavac V, Boyle R, editors. Image processing, analysis, and machine vision. 2nd ed. Washington, DC: PWS Publishing.Google Scholar
  7. 7.
    Reiner BI, Siegel EL. The clinical imperative of medical imaging informatics. J Digit Imaging. 2009;22(4):345–7.CrossRefGoogle Scholar
  8. 8.
    Rehman I, Smith CF. Orthopaedic surgical anatomy teaching collection. 2002. http://cdm15799.contentdm.oclc.org/cdm/landingpage/collection/p15799coll50.
  9. 9.
    Deserno TM, Antani S, Long R. Ontology of gaps in content-based image retrieval. J Digit Imaging. 2008;22(2):202–15.CrossRefGoogle Scholar
  10. 10.
    Müller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical applications – clinical benefits and future directions. Int J Med Inform. 2004;73(1):1–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institutes of HealthBethesdaUSA

Section editors and affiliations

  • Vipul Kashyap
    • 1
  1. 1.Clinical ProgramsCIGNA HealthcareBloomfieldUSA