Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Query Processing in Data Warehouses

  • Wolfgang LehnerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_298


Data warehouse query processing; Query execution in star/snowflake schemas; Query optimization for multidimensional systems


Data warehouses usually store a tremendous amount of current and historical data, which is advantageous and yet challenging at the same time, since the particular querying/updating/modeling characteristics make query processing rather difficult due to the high number of degrees of freedom.

Typical data warehouse queries are usually generated by online analytical processing (OLAP), data miningsoftware components, or in an ad hoc manner using toolkits for data scientists in the form of statistical packages and homegrown analytical tools. They show an extremely complex structure and usually address a large number of rows of the underlying database. For example, consider the following query: “Compute the monthly variation in the behavior of seasonal sales for all European countries but restrict the calculations to stores with >1 million turnover...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    N.N. Multidimensional Expressions (MDX) Reference. Available at: http://msdn2.microsoft.com/en-us/library/ms145506.aspx
  2. 2.
    Plattner H. The impact of columnar in-memory databases on enterprise systems. Proc VLDB Endow. 2014;7(13):1722–9.CrossRefGoogle Scholar
  3. 3.
    Raman V, Attaluri GK, Barber R, Chainani N, Kalmuk D, Samy VK, Leenstra J, Lightstone S, et al. DB2 with BLU acceleration: so much more than just a column store. Proc VLDB Endow. 2013;6(11):1080–91.CrossRefGoogle Scholar
  4. 4.
    Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 1997;26(1):65–74.CrossRefGoogle Scholar
  5. 5.
    Gray J, et al. The Lowell database research self assessment. 2003. Available at: http://research.microsoft.com/~gray/lowell/
  6. 6.
    Müller I, Sanders P, Lacurie A, Lehner W, Färber F. Cache-efficient aggregation: hashing is sorting. Proceedings of the ACM SIGMOD International Conference on Management of Data; 2015. p. 1123–36.Google Scholar
  7. 7.
    Data Mining Extensions (DMX) reference. Available at: http://msdn2.microsoft.com/en-us/library/ms132058.aspx
  8. 8.
    N.N. ISO/IEC 9075–14. Information technology – database languages – SQL – part 14: XML-related specifications (SQL/XML). 2003. Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35341
  9. 9.
    Faerber F, May N, Lehner W, Grosse P, Mueller I, Rauhe H, Dees J. The SAP HANA database – an architecture overview. IEEE Data Eng Bull. 2012;35(1):28–33.Google Scholar
  10. 10.
    Tao Y, Zhu Q, Zuzarte C, Lau W. Optimizing large star-schema queries with snowflakes via heuristic-based query rewriting. In: Proceedings of the Conference of the IBM Centre for Advanced Studies on Collaborative Research; 2003. p. 279–93.Google Scholar
  11. 11.
    Graefe G, Guy W, Kuno HA, Paulley G. Robust query processing (Dagstuhl seminar 12321). Dagstuhl Rep. 2012;2(8):1–15.  https://doi.org/10.4230/DagRep.2.8.1
  12. 12.
    Weipeng PY, Larson P. Eager aggregation and lazy aggregation. In: Proceedings of the 12th International Conference on Very Large Data Bases; 1995. p. 345–57.Google Scholar
  13. 13.
    Star Schema processing for complex queries. White Paper, Red Brick Systems, Inc., 1997. http://www.redbrick.com/products/white/whitebtm.html.
  14. 14.
    O’Neil B, Schrader M, Dakin J, Hardy K, Townsend M, Whitmer M. Oracle data warehousing unleashed. Indianapolis: SAMS Publishing; 1997.Google Scholar
  15. 15.
    He J, Lu M, He B. Revisiting co-processing for hash joins on the coupled CPU-GPU architecture. Proc VLDB Endow. 2013;6(10):889–900.CrossRefGoogle Scholar
  16. 16.
    Teubner J, Woods L. Data processing on FPGAs. In: Morgan Claypool Publishers. Data processing on FPGAs. 2013. p. 1–118.CrossRefGoogle Scholar
  17. 17.
    Sellis TK. Multiple-query optimization. ACM Trans Database Syst. 1988; 13(1):23–52.CrossRefGoogle Scholar
  18. 18.
    Copeland GP, Khoshafian SN. A decomposition storage mode. SIGMOD Rec. 1985;14(4):268–79.CrossRefGoogle Scholar
  19. 19.
    Abadi D, Madden S, Ferreira M. Integrating compression and execution in column-oriented database systems. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 671–82.Google Scholar
  20. 20.
    Chan C-Y. Bitmap index design and evaluation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1998. p. 355–66.Google Scholar
  21. 21.
    Valduriez P. Join indices. ACM Trans Database Syst. 1987;12(2):218–46.CrossRefGoogle Scholar
  22. 22.
    Weininger A. Efficient execution of joins in a star schema. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2002. p. 542–45.Google Scholar
  23. 23.
    Hellerstein JM, Haas PJ, Wang HJ. Online aggregation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1997. p. 171–82.Google Scholar
  24. 24.
    Garofalakis M, Gibbon B. Approximate query processing: taming the TeraBytes. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001.Google Scholar
  25. 25.
    Celko J. Joe Celko’s data warehouse and analytic queries in SQL. Morgan Kaufmann; 2006.Google Scholar
  26. 26.
    Clement TY, Meng W. Principles of database query processing for advanced applications. Morgan Kaufmann; 1997.Google Scholar
  27. 27.
    Graefe G. Query evaluation techniques for large Databases. ACM Comput Surv. 1993;25(2):73–170.CrossRefGoogle Scholar
  28. 28.
    Gupta A, Mumick I. Materialized views: techniques, implementations and applications. Cambridge, MA: MIT Press; 1999.Google Scholar
  29. 29.
    Inmon WH. Building the data warehouse. 2nd ed. New York: Wiley.Google Scholar
  30. 30.
    Niemiec R. Oracle database 10g performance tuning tips & techniques; 2007.Google Scholar
  31. 31.
    Roussopoulos N. The logical access path schema of a database. IEEE Trans Softw Eng. 1982;8(6):563–73.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dresden University of TechnologyDresdenGermany

Section editors and affiliations

  • Torben Bach Pedersen
    • 1
  • Stefano Rizzi
    • 2
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark
  2. 2.DISI – University of BolognaBolognaItaly