Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Optimization and Tuning in Data Warehouses

  • Ladjel BellatrecheEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_259


Physical design


Optimization and tuning in data warehouses (\(\mathcal {DW}\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abadi D, Boncz PA, Harizopoulos S, Idreos S, Madden S. The design and implementation of modern column-oriented database systems. Found Trends Databases. 2013;5(3):197–280.CrossRefGoogle Scholar
  2. 2.
    Bellatreche L, Boukhalfa K, Mohania MK. Pruning search space of physical database design. In: Proceedings of the 18th International Conference on Database and Expert Systems Applications; 2007. p. 479–88.Google Scholar
  3. 3.
    Bellatreche L, Boukhalfa K, Richard P, Woameno KY. Referential horizontal partitioning selection problem in data warehouses: hardness study and selection algorithms. Int J Data Warehouse Min. 2009;5(4):1–23.CrossRefGoogle Scholar
  4. 4.
    Bellatreche L, Cuzzocrea A, Benkrid S. Effectively and efficiently designing and querying parallel relational data warehouses on heterogeneous database clusters: the F&A approach. J Database Manag. 2012;23(4):17–51.CrossRefGoogle Scholar
  5. 5.
    Bellatreche L, Missaoui R, Necir H, Drias H. Selection and pruning algorithms for bitmap index selection problem using data mining. In: Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery; 2007. p. 221–30.Google Scholar
  6. 6.
    Benkrid S, Bellatreche L, Cuzzocrea A. Designing parallel relational data warehouses: a global, comprehensive approach. In: Proceedings of the 17th East European Conference on Advances in Databases and Information Systems; 2013. p. 141–50.Google Scholar
  7. 7.
    Chambi S, Lemire D, Kaser O, Godin R. Better bitmap performance with roaring bitmaps. Softw Pract Exper. 2016;46(5):709–19.CrossRefGoogle Scholar
  8. 8.
    Chaudhuri S, Narasayya V. Self-tuning database systems: a decade of progress. In: Proceedings of the 33rd International Conference on Very Large Databases; 2007. p. 3–14.Google Scholar
  9. 9.
    Chaudhuri S, Weikum G. Self-management technology in databases. In: Encyclopedia of Database Systems; 2009. p. 2550–55.Google Scholar
  10. 10.
    Deliège F, Pedersen TB. Position list word aligned hybrid: optimizing space and performance for compressed bitmaps. In: Proceedings of the 13th International Conference on Extending Database Technology; 2010. p. 228–39.Google Scholar
  11. 11.
    Du J, Miller RJ, Glavic B, Tan W. Deepsea: progressive workload-aware partitioning of materialized views in scalable data analytics. In: Proceedings of the 20th International Conference on Extending Database Technology; 2017. p. 198–209.Google Scholar
  12. 12.
    Goswami R, Bhattacharyya DK, Dutta M. Materialized view selection using evolutionary algorithm for speeding up big data query processing. J Intell Inf Syst. 2017;49(3):407–33.CrossRefGoogle Scholar
  13. 13.
    Gupta H. Selection of views to materialize in a data warehouse. In: Proceedings of the 6th International Conference on Database Theory; 1997. p. 98–112.Google Scholar
  14. 14.
    Gupta H. Selection and maintenance of views in a data warehouse. Ph.D. thesis, Stanford University; 1999.Google Scholar
  15. 15.
    Ibragimov D, Hose K, Pedersen TB, Zimányi E. Optimizing aggregate SPARQL queries using materialized RDF views. In: Proceedings of the 15th International Semantic Web Conference; 2016. p. 341–59.Google Scholar
  16. 16.
    Idreos S, Groffen F, Nes N, Manegold S, Sjoerd Mullender K, Kersten ML. Monetdb: two decades of research in column-oriented database architectures. IEEE Data Eng Bull. 2012;35(1):40–45.Google Scholar
  17. 17.
    Kotidis Y, Roussopoulos N. Dynamat: a dynamic view management system for data warehouses. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 371–82.CrossRefGoogle Scholar
  18. 18.
    Lamb A, Fuller M, Varadarajan R, Tran N, Vandier B, Doshi L, Bear C. The vertica analytic database: C-store 7 years later. Proc VLDB Endow. 2012;5(12):1790–801.CrossRefGoogle Scholar
  19. 19.
    Lübcke A. Automated query interface for hybrid relational architectures. Ph.D. thesis, University of Magdeburg; 2017.Google Scholar
  20. 20.
    MacNicol R, French B. Sybase IQ multiplex – designed for analytics. In: Proceedings of the 30th International Conference on Very Large Data Bases; 2004. p. 1227–30.Google Scholar
  21. 21.
    Mahboubi H, Darmont J. Data mining-based fragmentation of xml data warehouses. In: Proceedings of the ACM 11th International Workshop on Data Warehousing and OLAP; 2008. p. 9–16.Google Scholar
  22. 22.
    Mami I, Bellahsene Z. A survey of view selection methods. SIGMOD Rec. 2012;41(1):20–29.CrossRefGoogle Scholar
  23. 23.
    O’Neil PE, Quass D. Improved query performance with variant indexes. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1997. p. 38–49.Google Scholar
  24. 24.
    Oracle Data Sheet. Oracle partitioning. White Paper: http://www.oracle.com/technology/products/bi/db/11g/; 2007.
  25. 25.
    Özsu MT, Valduriez P. Principles of distributed database systems. 2nd ed. Upper Saddle River: Prentice Hall; 1999.Google Scholar
  26. 26.
    Papadomanolakis S, Ailamaki A. Autopart: automating schema design for large scientific databases using data partitioning. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management; 2004. p. 383–92.Google Scholar
  27. 27.
    Perriot R, Pfeifer J, d’Orazio L, Bachelet B, Bimonte S, Darmont J. Cost models for selecting materialized views in public clouds. Int J Data Warehouse Min. 2014;10(4):1–25.CrossRefGoogle Scholar
  28. 28.
    Phan T, Li W. Dynamic materialization of query views for data warehouse workloads. In: Proceedings of the 24th International Conference on Data Engineering; 2008. p. 436–45.Google Scholar
  29. 29.
    Ross KA, Srivastava D, Sudarshan S. Materialized view maintenance and integrity constraint checking: trading space for time. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 447–458.Google Scholar
  30. 30.
    Roukh A, Bellatreche L, Bouarar S, Boukorca A. Eco-physic: eco-physical design initiative for very large databases. Inf Syst. 2017;68(Aug):44–63.CrossRefGoogle Scholar
  31. 31.
    Sanjay A, Narasayya VR, Yang B. Integrating vertical and horizontal partitioning into automated physical database design. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2004. p. 359–70.Google Scholar
  32. 32.
    Schuhknecht FM, Jindal A, Dittrich J. An experimental evaluation and analysis of database cracking. VLDB J. 2016;25(1):27–52.CrossRefGoogle Scholar
  33. 33.
    Tang N, Xu Yu J, Tang H, Tamer Özsu M, Boncz PA. Materialized view selection in XML databases. In: Proceedings of the 14th International Conference on Database Systems for Advanced Applications; 2009. p. 616–30.CrossRefGoogle Scholar
  34. 34.
    Thusoo A, Sen Sarma J, Jain N, Shao Z, Chakka P, Zhang N, Anthony S, Liu H, Murthy R. Hive – a petabyte scale data warehouse using hadoop. In: Proceedings of the 26th International Conference on Data Engineering; 2010. p. 996–1005.Google Scholar
  35. 35.
    Yang J, Karlapalem K, Li Q. Algorithms for materialized view design in data warehousing environment. In: Proceedings of the 23th International Conference on Very Large Data Bases; 1997. p. 136–45.Google Scholar
  36. 36.
    Zhang C, Yang J. Genetic algorithm for materialized view selection in data warehouse environments. In: Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery; 1999. p. 116–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIAS/ISAE-ENSMAPoitiers UniversityFuturoscopeFrance