Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Object-Role Modeling

  • Terry HalpinEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_251


Fact-oriented modeling; NIAM


Object-Role Modeling (ORM), also known as fact-oriented modeling, is a conceptual approach to modeling and querying the information semantics of business domains in terms of the underlying facts of interest, where all facts and rules may be verbalized in language readily understood by non-technical users of those business domains. Unlike Entity-Relationship (ER) modeling and Unified Modeling Language (UML) class diagrams, ORM treats all facts as relationships (unary, binary, ternary etc.). How facts are grouped into structures (e.g., attribute-based entity types, classes, relation schemes, XML schemas) is considered a design level, implementation issue that is irrelevant to the capturing of essential business semantics.

Avoiding attributes in the base model enhances semantic stability, populatability, and natural verbalization, facilitating communication with all stakeholders. For information modeling, fact-oriented graphical notations...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bakema G, Zwart J, van der Lek H. Fully communication oriented information Modelling. The Netherlands: Ten Hagen Stam; 2000.Google Scholar
  2. 2.
    Bloesch A, Halpin T. Conceptual queries using ConQuer-II. In: Proceedings of the 16th International Conference on Conceptual Modeling; 1997. p. 113–26.CrossRefGoogle Scholar
  3. 3.
    Curland M, Halpin T. Model driven development with NORMA. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences; 2007.Google Scholar
  4. 4.
    Embley D, Kurtz B, Woodfield S. Object-oriented systems analysis: a model-driven approach. Englewood Cliffs: Prentice Hall; 1992.Google Scholar
  5. 5.
    Falkenberg E. Concepts for modeling information. In: Proceedings of the IFIP Working Conference on Modelling in Data Base Management Systems; 1976. p. 95–109.Google Scholar
  6. 6.
    Halpin T. Comparing metamodels for ER, ORM and UML data models. In: Siau K, editor. Advanced topics in database research. Idea Publishing Group: Hershey; 2004. p. 23–44.CrossRefGoogle Scholar
  7. 7.
    Halpin T. Fact-oriented modeling: past, present and future. In: Krogstie J, Opdahl A, Brinkkemper S, editors. Conceptual modelling in information systems engineering. Springer: Berlin Heidelberg; 2007. p. 19–38.CrossRefGoogle Scholar
  8. 8.
    Halpin T, Curland M. Automated verbalization for ORM 2. In: On the move to meaningful internet systems 2006: OTM 2006 workshops. LNCS, vol. 4278. Heidelberg: Springer; 2006. p. 1181–90.CrossRefGoogle Scholar
  9. 9.
    Halpin T, Evans K, Hallock P, MacLean W. Database modeling with Microsoft® Visio for enterprise architects. San Francisco: Morgan Kaufmann; 2003.Google Scholar
  10. 10.
    Halpin T, Morgan T. Information modeling and relational databases. 2nd ed. San Francisco: Morgan Kaufmann; 2008.Google Scholar
  11. 11.
    Meersman R. The RIDL conceptual language, research report. International Centre for Information Analysis Services, Control Data Belgium, Brussels; 1982.Google Scholar
  12. 12.
    Nijssen GM. Current issues in conceptual schema concepts. In: Proceedings of the IFIP Working Conference on Modelling in Data Base Management Systems; 1977. p. 31–66.Google Scholar
  13. 13.
    OMG. Semantics of usiness Vocabulary and Business Rules (SBVR). URL: http://www.omg.org/cgi-bin/doc?dtc/2006-08-05. 2007.
  14. 14.
    ter Hofstede AHM, Proper HA, van der Weide TP. Formal definition of a conceptual language for the description and manipulation of information models. Inf Syst. 1993;18(7):489–523.CrossRefGoogle Scholar
  15. 15.
    Trog D, Vereecken J, Christiaens S, De Leenheer P, Meersman R. T-Lex: a role-based ontology engineering tool. In: On the move to meaningful internet systems 2006: OTM 2006 workshops. LNCS, vol. 4278. Heidelberg: Springer; 2006. p. 1191–200.CrossRefGoogle Scholar
  16. 16.
    Wintraecken J. The NIAM information analysis method: theory and practice, vol. 1990. Deventer: Kluwer; 1990.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neumont UniversitySouth JordanUSA

Section editors and affiliations

  • David W. Embley
    • 1
  1. 1.Brigham Young UniversityProvoUSA