Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Multiple Representation Modeling

  • Esteban ZimányiEmail author
  • Christine Parent
  • Stefano Spaccapietra
  • Christelle Vangenot
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_237


Multi-granularity modeling; Multi-resolution; Multi-scale


Geodata management systems (i.e., GIS and DBMS) are said to support multiple representationsif they have the capability to record and manage multiple representations of the same real-world phenomena. For example, the same building may have two representations, one with administrative data (e.g., owner and address) and a geometry of type point, and the other one with technical information (e.g., material and height) and a geometry of type surface. Multirepresentation is essential to make a data repository suitable for use by various applications that focus on the same real world of interest, while each application has a specific perception matching its goals. Different perceptions translate into different requirements determining what information is kept and how it is structured, characterized, and valued. A typically used case is map agencies that edit a series of national maps at various scales and on...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Badard T, Lemarié C. Propagating updates between geographic databases with different scales. chapter 10. In: Atkinson P, Martin D, editors. Innovations in GIS 7: GIS and geo computation. London: Taylor and Francis; 2000. p. 135–46.Google Scholar
  2. 2.
    Bédard Y, Bernier E. Supporting multiple representations with spatial view management and the concept of VUEL. In: Proceedings of the Joint Workshop on Multiscale Representations of Spatial Data; 2002.Google Scholar
  3. 3.
    Borges K, Davis CA, Laender A. OMT-G: an object-oriented data model for geographic applications. Geo Informatica. 2001;5(3):221–60.zbMATHGoogle Scholar
  4. 4.
    Devogele T, Parent C, Spaccapietra S. On spatial database integration. Int J Geogr Inf Syst. 1998;12(4):335–52.CrossRefGoogle Scholar
  5. 5.
    Friis-Christensen A, Jensen CS, Nytun JP, Skogan D. A conceptual schema language for the management of multiple representations of geographic entities. Trans GIS. 2005;9(3):345–80.CrossRefGoogle Scholar
  6. 6.
    Kilpelaïnen T. Maintenance of topographic data by multiple representations. In: Proceedings of the Annual Conference and Exposition of GIS/LIS; 1998. p. 342–51.Google Scholar
  7. 7.
    Mustière S, Van Smaalen J. Database requirements for generalisation and multiple representations. In: Mackaness WA, Ruas A, Sarjakoski T, editors. Generalisation of geographical information: cartographic modelling and applications. Amsterdam: Elsevier; 2007.Google Scholar
  8. 8.
    Parent C, Spaccapietra S, Zimányi E. Conceptual modeling for traditional and spatio-temporal applications:the MADS approach. Berlin: Springer; 2006.zbMATHGoogle Scholar
  9. 9.
    Sarjakoski LT. Conceptual models of generalisation and multiple representation. In: Mackaness WA, Ruas A, Sarjakoski T, editors. Generalisation of geographical information: cartographic modelling and applications. Elsevier: Amsterdam; 2007. p. 11–36.CrossRefGoogle Scholar
  10. 10.
    Sheeren D, Mustière S, Zucker JD. How to integrate heterogeneous spatial databases in a consistent way? In: Proceedings of the 8th East European Conference on Advances in Databases and Information Systems; 2004. p. 364–78.CrossRefGoogle Scholar
  11. 11.
    Sotnykova A, Vangenot C, Cullot N, Bennacer N, Aufaure M-A. Semantic mappings in description logics for spatio-temporal database schema integration. In: Spaccapietra S, Zimanyi E, editors. Journal on Data Semantics III. Lecture notes in computer science, vol. 3534. Heidelberg: Springer. p. 143–67.CrossRefGoogle Scholar
  12. 12.
    Stell JG, Worboys MF Stratified map spaces: a formal basis for multi-resolution spatial databases. In: Proceedings of the 8th International Symposium on Spatial Data Handling; 1998. p. 180–9.Google Scholar
  13. 13.
    Stuckenschmidt H, Parent C, Spaccapietra S. Modular ontologies. Berlin/New York: Springer LNCS; 2009.zbMATHCrossRefGoogle Scholar
  14. 14.
    Timpf S. Map cube model: a model for multi-scale data. In: Proceedings of the 8th International Symposium on Spatial Data Handling; 1998. p. 190–201.Google Scholar
  15. 15.
    Weibel R, Dutton G. Generalizing spatial data and dealing with multiple representations. In: Geographical information systems: principles, techniques, management and applications, 1, 2nd, P Longley, MF Goodchild, DJ Maguire, DW Rhind. New York/Chichester: Wiley; 1999. p. 125–155.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Esteban Zimányi
    • 1
    Email author
  • Christine Parent
    • 2
  • Stefano Spaccapietra
    • 3
  • Christelle Vangenot
    • 3
  1. 1.CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.University of LausanneLausanneSwitzerland
  3. 3.EPFLLausanneSwitzerland

Section editors and affiliations

  • Ralf Hartmut Güting
    • 1
  1. 1.Computer ScienceUniversity of HagenHagenGermany