Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Array Databases

  • Peter BaumannEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_2061


Raster databases


Array (also called raster or grid): a collection of data items sharing the same data type where each item has a coordinate associated which sits at grid points in a rectangular, axis-parallel subset of the Euclidean space Zd for some d > 0 (same as arrays in programming languages).

Array database system: a database system with modeling and query support for multidimensional arrays.

Array query language: a query language allowing declarative retrieval on multidimensional arrays.

Historical Background

Traditionally, all data not tractable with relational tables have been considered “unstructured”; this has long included multidimensional (“n-D”) arrays although these have a very regular structure. Arrays form an important, widespread information structure appearing in virtually all domains and effectively make up for a large part of today’s “Big Data” as spatiotemporal sensor, image, simulation, and statistics data in science, engineering, business,...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Baumann P. On the management of multidimensional discrete data. VLDB J. 1994;4(3):401–44. Special Issue on Spatial Database Systems.CrossRefGoogle Scholar
  2. 2.
    Baumann P. A database array algebra for spatio-temporal data and beyond. In: Proceedings of the 5th Workshop on Next Generation Information Technologies and Systems; 1999. p. 76–93.CrossRefGoogle Scholar
  3. 3.
    Baumann P. The OGC web coverage processing service (WCPS) standard. GeoInformatica. 2010;14(4):447–79.CrossRefGoogle Scholar
  4. 4.
    Baumann P. OGC web coverage processing service (WCPS) language interface standard. OGC document 08-068r2; 2010a.Google Scholar
  5. 5.
    Baumann P, Feyzabadi S, Jucovschi C. Putting pixels in place: a storage layout language for scientific data. In: Proceedings of the IEEE ICDM Workshop on Spatial and Spatiotemporal Data Mining; 2010b. p. 194–201.Google Scholar
  6. 6.
    Baumann P, Stamerjohanns H. Benchmarking large arrays in databases. In: Proceedings of the Workshop on Big Data Benchmarking; 2012. p. 94–102.Google Scholar
  7. 7.
    Buck J, Watkins N, LeFevre J, Ioannidou K, Maltzahn C, Polyzotis N, Brandt SA. SciHadoop: array-based query processing in Hadoop. In: Proceedings of the High Performance Computing, Networking, Storage and Analysis Super Computing; 2011. p. 66:1–66:11.Google Scholar
  8. 8.
    Cheng Y, Rusu F. Astronomical data processing in EXTASCID. In: Szalay A, Budavari T, Balazinska M, Meliou A, Sacan A editors. Proceedings of the 25th International Conference on Scientific and Statistical Database Management; 2013. Article 47.  https://doi.org/10.1145/2484838.2484875.
  9. 9.
    Cheng Y, Rusu F. Formal representation of the SS-DB benchmark and experimental evaluation in EXTASCID. Distrib Parallel Databases. 2013;33(3):277.  https://doi.org/10.1007/s10619-014-7149-7.CrossRefGoogle Scholar
  10. 10.
    Chock M, Cardenas A, Klinger A. Database structure and manipulation capabilities of a picture database management system (PICDMS). IEEE ToPAMI. 1984;6(4):484–92.CrossRefGoogle Scholar
  11. 11.
    Dehmel A. A compression engine for multidimensional array database systems. PhD thesis, TU München; 2002.Google Scholar
  12. 12.
    Dumitru A, Merticariu V, Baumann P. Exploring cloud opportunities from an array database perspective. In: Proceedings of the ACM SIGMOD Workshop on Data Analytics in the Cloud; 2014.Google Scholar
  13. 13.
    EarthServer: The EarthServer Initiative. www.earthserver.eu. Seen 12 Apr 2017.
  14. 14.
    Furtado P, Baumann P. Storage of multidimensional arrays based on arbitrary tiling. In: Proceedings of the International Conference on Data Engineering; 1999. p. 328–36.Google Scholar
  15. 15.
    Hahn K, Reiner B. Parallel query support for multidimensional data: inter-object parallelism. In: Proceedings of the 13th International Conference on Database and Expert Systems Applications; 2002.Google Scholar
  16. 16.
    Libkin L, Machlin R, Wong L. A query language for multidimensional arrays: design, implementation and optimization techniques. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 228–39.Google Scholar
  17. 17.
    Machlin R. Index-based multidimensional array queries: safety and equivalence. In: Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2007.Google Scholar
  18. 18.
    Marathe A, Salem K. A language for manipulating arrays. In: Proceedings of the 23th International Conference on Very Large Data Bases; 1997. p. 46–55.Google Scholar
  19. 19.
    Melton J, Baumann P, Misev D. ISO/IEC 9075–15 SQL MDA (multi-dimensional arrays).Google Scholar
  20. 20.
    Mennis J, Viger R, Tomlin CD. Cubic map algebra functions for spatio-temporal analysis. Cartogr Geogr Inf Sci. 2005;32(1):17–32.CrossRefGoogle Scholar
  21. 21.
    Merticariu G, Misev D, Baumann P. Measuring storage access performance in array databases. In: Proceedings of the 7th Workshop on Big Data Benchmarking; 2016.CrossRefGoogle Scholar
  22. 22.
    Misev D, Baumann P. Extending the SQL array concept to support scientific analytics. In: Proceedings of the Scientific and Statistical Database Management; 2014. p. 10:1–10:11.Google Scholar
  23. 23.
    N.n.: ISO/IEC 19139 XML schema, http://www.isotc211.org/2005/gmd/. Seen 29 July 2014.
  24. 24.
    N.n.: ISO/IEC 9075–1 SQL Foundation.Google Scholar
  25. 25.
    N.n.: Multipurpose internet mail extensions (MIME) part one: format of internet message bodies, https://tools.ietf.org/html/rfc2045. Seen 12 Apr 2017.
  26. 26.
    Pisarev A, Poustelnikova E, Samsonova M, Baumann P. Mooshka: a system for the management of multidimensional gene expression data in situ. Inf Syst. 2003;28(4):269–85.zbMATHCrossRefGoogle Scholar
  27. 27.
    PostGIS: PostGIS Raster manual. Seen 29 July 2014.Google Scholar
  28. 28.
    RDA: Array Database Assessment Working Group. https://www.rd-alliance.org/groups/array-database-working-group.html. Seen 12 Apr 2017.
  29. 29.
    Reiner B, Hahn K. Hierarchical storage support and management for large-scale multidimensional array database management systems. In: Proceedings of the 13th International Conference on Database and Expert Systems Applications; 2002.Google Scholar
  30. 30.
    Sarawagi S, Stonebraker M. Efficient organization of large multidimensional arrays. In: Proceedings of the International Conference on Data Engineering; 1994. p. 328–36.Google Scholar
  31. 31.
    Soroush E, Balazinska M, Wang D. ArrayStore: a storage manager for complex parallel array processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2011. p. 253–64.Google Scholar
  32. 32.
    Stonebraker M, Brown P, Poliakov A, Raman S. The architecture of SciDB. In: Proceedings of the 23rd International Conference on Scientific and Statistical Database Management; 2011. p. 1–16.Google Scholar
  33. 33.
    Teradata: User-Defined Data Type, ARRAY Data Type, and VARRAY Data Type Limits. Seen 29 July 2014.Google Scholar
  34. 34.
    XLDB: Science Benchmark. http://www.xldb.org/science-benchmark/. Seen 12 Apr 2017.
  35. 35.
    Zhang Y, Kersten M L, Ivanova M, Nes, N. SciQL, bridging the gap between science and relational DBMS. In: Desai BC, Cruz IF, Bernardino J, editors. Proceedings of the 15th Symposium on International Database Engineering and Applications; 2011. p. 124–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jacobs UniversityBremenGermany

Section editors and affiliations

  • Amarnath Gupta
    • 1
  1. 1.San Diego Supercomputer CenterUniv. of California San DiegoLa JollaUSA