Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Inference Control in Statistical Databases

  • Josep Domingo-FerrerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_203


Statistical disclosure control (SDC); Statistical disclosure limitation (SDL)


Inference control in databases, also known as Statistical Disclosure Control (SDC), is a discipline that seeks to protect data so they can be published without revealing confidential information that can be linked to specific individuals among those to which the data correspond. SDC is applied to protect respondent privacy in areas such as official statistics, health statistics, e-commerce (sharing of consumer data), etc. Since data protection ultimately means data modification, the challenge for SDC is to achieve protection with minimum loss of the accuracy sought by database users.

Historical Background

The literature on inference control started in the 1970s, with the seminal contribution by Dalenius [ 4] in the statistical community and the works by Schlörer [ 11] and others in the database community. The 1980s saw moderate activity in this field. An excellent survey of the state of the...
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Adam NR, Wortmann JC. Security-control for statistical databases: a comparative study. ACM Comput Surv. 1989;21(4):515–56.CrossRefGoogle Scholar
  2. 2.
    CASC. Computational aspects of statistical confidentiality, 2004. European project IST-2000-25069 CASC, Fifth FP, 2001–2004. http://neon.vb.cbs.nl/casc
  3. 3.
    Chin FY, Ozsoyoglu G. Auditing and inference control in statistical databases. IEEE Trans Softw Eng. 1982;SE-8(6):574–82.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dalenius T. The invasion of privacy problem and statistics production. An overview. Statistik Tidskrift. 1974;12:213–25.Google Scholar
  5. 5.
    Duncan GT, Mukherjee S. Optimal disclosure limitation strategy in statistical databases: deterring tracker attacks through additive noise. J Am Stat Assoc. 2000;95(451):720–9.CrossRefGoogle Scholar
  6. 6.
    Fischetti M, Salazar J-J. Solving the cell suppression problem on tabular data with linear constraints. Manag Sci. 2001;47(7):4.zbMATHCrossRefGoogle Scholar
  7. 7.
    Giessing S. Survey on methods for tabular data protection in argus. In: Domingo-Ferrer J, Torra V, editors. Privacy in statistical databases, LNCS, vol. 3050. Springer; 2004. p. 1–13.Google Scholar
  8. 8.
    Gopal R, Garfinkel R, Goes P. Confidentiality via camouflage: the CVC approach to disclosure limitation when answering queries to databases. Operat Res. 2002;50(3):501–16.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hundepool A, Domingo-Ferrer J, Franconi L, Giessing S, Lenz R, Longhurst J, Schulte-Nordholt E, Seri G, DeWolf P-P. Handbook on statistical disclosure control (version 1.0). Eurostat (CENEX SDC Project Deliverable); 2006.Google Scholar
  10. 10.
    Hundepool A, van de Wetering A, Ramaswamy R, de Wolf P-P, Giessing S, Fischetti M, Salazar J-J, Castro J, Lowthian P. τ-ARGUS v. 3.2 software and user’s manual, CENEX SDC Project Deliverable, February 2007. http://neon.vb.cbs.nl/casc/TAU.html
  11. 11.
    Schlörer J. Identification and retrieval of personal records from a statistical data bank. Methods Inform Med. 1975;14(1):7–13.CrossRefGoogle Scholar
  12. 12.
    Schlörer J. Disclosure from statistical databases: quantitative aspects of trackers. ACM Trans Database Syst. 1980;5(4):467–92.zbMATHCrossRefGoogle Scholar
  13. 13.
    Willenborg L, DeWaal T. Elements of statistical disclosure control. Berlin: Springer; 2001.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Section editors and affiliations

  • Elena Ferrari
    • 1
  1. 1.DiSTAUniv. of InsubriaVareseItaly