Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Graph Database

  • Peter T. WoodEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_183


Link database; Network database; Semi-structured database


A graph database is a database whose data model conforms to some form of graph (or network or link) structure. The graph data model usually consists of nodes (or vertices) and (directed) edges (or arcs or links), where the nodes represent concepts (or objects) and the edges represent relationships (or connections) between these concepts (objects). Therefore the nodes are typically labeled with the names of concepts or objects, while the edges are labeled with types of relationships. More elaborate labeling might involve sets of attribute-value pairs being associated with nodes and/or edges. In addition, more complex structures, such as nested graphs or hypergraphs, may also be permitted. On the other hand, the graph model may be restricted to allow only certain types of graph structures, for example, only acyclic graphs or those that have a distinguished root node.

Similar to relational databases, users can...

This is a preview of subscription content, log in to check access.


  1. 1.
    Abiteboul S, Buneman P, Suciu D. Data on the Web: from relations to semistructured data and XML. San Francisco: Morgan Kaufmann; 2000.Google Scholar
  2. 2.
    Angles R, Gutiérrez C. Survey of graph database models. ACM Comput Surv. 2008;40(1):1–39.CrossRefGoogle Scholar
  3. 3.
    Baeza P. Querying graph databases. In: Proceedings of the 32nd ACM Symposium on Principles of Databases Systems; 2013. p. 175–88.Google Scholar
  4. 4.
    Buneman P, Davidson S, Fernandez M, Suciu D. Adding structure to unstructured data. In: Proceedings of the 6th International Conference on Database Theory; 1997. p.336–50.Google Scholar
  5. 5.
    Calvanese D, De Giacomo G, Lenzerini M, Vardi MY. Reasoning on regular path queries. SIGMOD Rec. 2003;32(4):83–92.CrossRefGoogle Scholar
  6. 6.
    Consens MP, Mendelzon AO. Hy+: a hygraph-based query and visualization system. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1993. p. 511–16.Google Scholar
  7. 7.
    Fernandez M, Suciu D. Optimizing regular path expressions using graph schemas. In: Proceedings of the 14th International Conference on Data Engineering; 1998. p. 14–23.Google Scholar
  8. 8.
    Giugno R, Shasha D. GraphGrep: a fast and universal method for querying graphs. In: Proceedings of the 16th International Conference on Pattern Recognition; 2002. p. 112–15.Google Scholar
  9. 9.
    Goldman R, Widom J. DataGuides: enabling query formulation and optimization in semistructured databases. In: Proceedings of the 23rd International Conference on Very Large Data Bases; 1997. p. 436–45.Google Scholar
  10. 10.
    Gyssens M, Paredaens J, Van den Bussche J, Van Gucht D. A graph-oriented object database model. IEEE Trans Knowl Data Eng. 1994;6(4):572–86.CrossRefGoogle Scholar
  11. 11.
    Harel D. On visual formalisms. Commun ACM. 1988;31(5):514–30.MathSciNetCrossRefGoogle Scholar
  12. 12.
    He H, K Singh A. Graphs-at-a-time: query language and access methods for graph databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2008. p. 405–18.Google Scholar
  13. 13.
    Mendelzon AO, Wood PT. Finding regular simple paths in graph databases. SIAM J Comput. 1995;24(6):1235–258.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mendelzon AO, Mihaila G, Milo T. Querying the World Wide Web. Int J Digit Libr. 1997;1(1): 54–67.Google Scholar
  15. 15.
    Milo T, Suciu D. Index structures for path expressions. In: Proceedings of the 7th International Conference on Database Theory; 1999. p. 277–95.Google Scholar
  16. 16.
    Olken F. Graph data management for molecular biology. OMICS: J Integr Biol. 2003;7(1):75–78.CrossRefGoogle Scholar
  17. 17.
    Picalausa F, Luo Y, Fletcher GHL, Hidders J, Vansummeren S. A structural approach to indexing triples. In: Proceedings of the 9th Extended Semantic Web Conference; 2012. p. 406–21.Google Scholar
  18. 18.
    Poulovassilis A, Levene M. A nested-graph model for the representation and manipulation of complex objects. ACM Trans Inf Syst. 1994;12(1):35–68.CrossRefGoogle Scholar
  19. 19.
    Sarwat M, Elnikety S, He Y, Kliot G. Horton: online query execution engine for large distributed graphs. In: Proceedings of the 28th International Conference on Data Engineering; 2012. p. 1289–292.Google Scholar
  20. 20.
    Sheth A, Aleman-Meza1 B, Budak Arpinar I, Bertram C, Warke Y, Ramakrishnan C, Halaschek C, Anyanwu K, Avant D, Sena Arpinar F, Kochut K. Semantic association identification and knowledge discovery for national security applications. J Database Manag. 2005;16(1):33–53.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tompa FW. A data model for flexible hypertext database systems. ACM Trans Database Syst. 1989;7(1):85–100.CrossRefGoogle Scholar
  22. 22.
    Trißl S, Leser U. Fast and practical indexing and querying of very large graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2007. p. 845–56.Google Scholar
  23. 23.
    Wood PT. Query languages for graph databases. SIGMOD Rec. 2012;41(1):50–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Birkbeck, University of LondonLondonUK