Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Schema Evolution

  • John F. RoddickEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1532


Schema evolution deals with the need to retain current data when database schema changes are performed. Formally, Schema Evolution is accommodated when a database system facilitates database schema modification without the loss of existing data, (q.v. the stronger concept of Schema Versioning) (Schema evolution and schema versioning has been conflated in the literature with the two terms occasionally being used interchangeably. Readers are thus also encouraged to read also the entry for Schema Versioning.).

Historical Background

Since schemata change and/or multiple schemata are often required, there is a need to ensure that extant data either stays consistent with the revised schema or is explicitly deleted as part of the change process. A database that supports schema evolution supports this transformation process.

The first schema evolutioning proposals discussed database conversion primarily in terms of a set of transformations from one schema to another [10]. These...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bancilhon F, Spyratos N. Update semantics of relational views. ACM Trans Database Syst. 1981;6(4):557–75.zbMATHCrossRefGoogle Scholar
  2. 2.
    Bretl R, Maier D, Otis A, Penney J, Schuchardt B, Stein J, Williams EH, Williams M. The GemStone data management system. In: Kim W, Lochovsky F, editors. Object-oriented concepts, databases and applications. New York: ACM; 1989. p. 283–308.Google Scholar
  3. 3.
    Hick JM, Hainaut JL. Database application evolution: a transformational approach. Data Knowl Eng. 2006;59(3):534–58.CrossRefGoogle Scholar
  4. 4.
    Hull R. Relative information capacity of simple relational database schemata. Soc Ind Appl Math. 1986;15(3):856–86.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kim W, Chou H.T. Versions of schema for object-oriented databases. In: Proceedings of the 24th International Conference on Very Large Data Bases; 1988. p. 148–59.Google Scholar
  6. 6.
    Melnik S, Rahm E, Bernstein PA. Rondo: a programming platform for generic model management. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003. p. 193–204.Google Scholar
  7. 7.
    Miller R, Ioannidis Y, Ramakrishnan R. The use of information capacity in schema integration and translation. In: Proceedings of the 19th International Conference on Very Large Data Bases; 1993. p. 120–33.Google Scholar
  8. 8.
    Ra YG, Rundensteiner EA. A transparent schema-evolution system based on object-oriented view technology. IEEE Trans Knowl Data Eng. 1997;9(4):600–24.CrossRefGoogle Scholar
  9. 9.
    Roddick JF. SQL/SE – a query language extension for databases supporting schema evolution. ACM SIGMOD Rec. 1992;21(3):10–6.CrossRefGoogle Scholar
  10. 10.
    Shneiderman B, Thomas G. An architecture for automatic relational database system conversion. ACM Trans Database Syst. 1982;7(2):235–57.CrossRefGoogle Scholar
  11. 11.
    Sjøberg D. Quantifying schema evolution. Inf Softw Technol. 1993;35(1):35–44.CrossRefGoogle Scholar
  12. 12.
    Tan L, Katayama T. Meta operations for type management in object-oriented databases - a lazy mechanism for schema evolution. In: Proceedings of the 1st International Conference on Deductive and Object-Oriented Databases; 1989. p. 241–58.CrossRefGoogle Scholar
  13. 13.
    de Vries D, Roddick JF. The case for mesodata: an empirical investigation of an evolving database system. Inf Softw Technol. 2007;49(9–10):1061–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Flinders UniversityAdelaideAustralia

Section editors and affiliations

  • Richard T. Snodgrass
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Aalborg UniversityAalborg ØstDenmark