Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Bitemporal Indexing

  • Mirella M. MoroEmail author
  • Vassilis J. Tsotras
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1514


Bi-temporal access methods


A bi-temporal index is a data structure that supports both temporal time dimensions, namely, transaction time (the time when a fact is stored in the database) and valid time (the time when a fact becomes valid in reality). The characteristics of the time dimensions supported imply various properties that the bi-temporal index should have to be efficient. As traditional indices, the performance of a temporal index is described by three costs: (i) storage cost (i.e., the number of pages the index occupies on the disk), (ii) update cost (the number of pages accessed to perform an update on the index, e.g., when adding, deleting, or updating a record), and (iii) query cost (the number of pages accessed for the index to answer a query).

Historical Background

Most of the early work on temporal indexing has concentrated on providing solutions for transaction-time databases. A basic property of transaction time is that it always increases. Each...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P. An asymptotically optimal multiversion B-tree. VLDB J. 1996;5(4):264–75.CrossRefGoogle Scholar
  2. 2.
    Bliujute R, Jensen CS, Saltenis S, Slivinskas G. R-tree based indexing of now-relative bitemporal data. In: Proceedings of the 24th International Conference on Very Large Data Bases; 1998. p. 345–56.Google Scholar
  3. 3.
    Burton FW, Huntbach MM, Kollias JG. Multiple generation text files using overlapping tree structures. Comput J. 1985;28(4):414–6.CrossRefGoogle Scholar
  4. 4.
    Driscoll JR, Sarnak N, Sleator DD, Tarjan RE. Making data structures persistent. J Comput Syst Sci. 1989;38(1):86–124.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kumar A, Tsotras VJ, Faloutsos C. Designing access methods for bitemporal databases. IEEE Trans Knowl Data Eng. 1998;10(1):1–20.CrossRefGoogle Scholar
  6. 6.
    Nascimento MA, Silva JRO. Towards historical R-trees. In: Proceedings of the 1998 ACM Symposium on Applied Computing; 1998. p. 235–40.Google Scholar
  7. 7.
    Salzberg B, Tsotras VJ. A comparison of access methods for time-evolving data. ACM Comput Surv. 1999;31(2):158–221.CrossRefGoogle Scholar
  8. 8.
    Snodgrass RT, Ahn I. Temporal databases. IEEE Comput. 1986;19(9):35–42.zbMATHCrossRefGoogle Scholar
  9. 9.
    Tzouramanis T, Vassilakopoulos M, Manolopoulos Y. Overlapping linear quadtrees and spatio-temporal query processing. Comput J. 2000;43(4):325–43.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencia da ComputaçaoUniversidade Federal de Minas Gerais – UFMGBelo HorizonteBrazil
  2. 2.University of California-RiversideRiversideUSA

Section editors and affiliations

  • Richard T. Snodgrass
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Aalborg UniversityAalborg ØstDenmark