Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Schema Mapping Composition

  • Wang-Chiew TanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1467


Mapping composition; Semantic mapping composition


A schema mapping (or mapping) is a triple = ( S 1, S 2, Σ), where S 1 and S 2 are relational schemas with no relation symbols in common and Σ is a set of formulas of some logical formalism over ( S 1, S 2). An instance of is a pair ( I, J) where I is an instance of S 1 and J is an instance of S 2 such that ( I, J) satisfies every formula in the set Σ. The set of all instances of is denoted as Inst .
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Beeri C, Vardi MY. A proof procedure for data dependencies. J ACM. 1984;31(4):718–41.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bernstein PA, Halevy AY, Pottinger R. A vision of management of complex models. ACM SIGMOD Rec. 2000;29(4):55–63.CrossRefGoogle Scholar
  3. 3.
    Bernstein PA, Green TJ, Melnik S, Nash A. Implementing mapping composition. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 55–66.Google Scholar
  4. 4.
    Dessloch S, Hernández M, Wisnesky R, Radwan A, Zhou J. Orchid: integrating schema mapping and ETL. In: Proceedings of the 24th international conference on data engineering; 2008. p. 1307–16.Google Scholar
  5. 5.
    Fagin R. Generalized first-order spectra and polynomial-time recognizable sets. In: Karp RM, editor. Complexity of computation, SIAM-AMS Proceedings, vol. 7. 1974. p. 43–73.Google Scholar
  6. 6.
    Fagin R. Inverting schema mappings. ACM Trans Database Syst. 2007;32(4):24.zbMATHCrossRefGoogle Scholar
  7. 7.
    Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query answering. Theor Comput Sci. 2005a;336(1):89–124.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fagin R, Kolaitis PG, Popa L, Tan WC. Composing schema mappings: second-order dependencies to the rescue. ACM Trans Database Syst. 2005b;30(4):994–1055.CrossRefGoogle Scholar
  9. 9.
    Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2002. p. 233–46.Google Scholar
  10. 10.
    Madhavan J, Halevy AY. Composing mappings among data sources. In: Proceedings of the 29th International Conference on Very Large Data Bases; 2003. p. 572–83.CrossRefGoogle Scholar
  11. 11.
    Maier D, Mendelzon AO, Sagiv Y. Testing implications of data dependencies. ACM Trans Database Syst. 1979;4(4):455–69.CrossRefGoogle Scholar
  12. 12.
    Nash A, Bernstein PA, Melnik S. Composition of mappings given by embedded dependencies. ACM Trans Database Syst. 2007;32(1):4.CrossRefGoogle Scholar
  13. 13.
    Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R. Translating web data. In: Proceedings of the 28th International Conference on Very Large Data Bases; 2002. p. 598–609.CrossRefGoogle Scholar
  14. 14.
    Yu C, Popa L. Semantic adaptation of schema mappings when schemas evolve. In: Proceedings of the 31st International Conference on Very Large Data Bases; 2005. p. 1006–17.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of California-Santa CruzSanta CruzUSA

Section editors and affiliations

  • Renée J. Miller
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Toronto, Department of Computer ScienceTorontoCanada