Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Languages for Web Data Extraction

  • Nicholas KushmerickEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1156


Information extraction; Screen scraping; Web mining; Web scraping; Web site wrappers


Web data extraction is the process of automatically converting Web resources into a specific structured format. For example, if a collection of HTML web pages describes details about various companies (name, headquarters, etc) then web data extraction would involve converting this native HTML format into computer-processable data structures, such as entries in relational database tables. The purpose of web data extraction is to make web data available for subsequent manipulation or integration steps. In the previous example, the goal may be summarizing the results as some form of analytical report.

There are several approaches to Web data extraction. The most common approach is to specify the conversion process using a special-purpose programming Language for Web Data Extraction. Web data extraction then becomes a matter of executing a well-defined computer program.

Web data...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Arasu A, Garcia-Molina H. Extracting structured data from Web pages. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003. p. 337–48.Google Scholar
  2. 2.
    Baumgartner R, Flesca S, Gottlob G. Visual web information extraction with Lixto. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001. p. 119–28.Google Scholar
  3. 3.
    Crescenzi V, Mecca G, Merialdo P. RoadRunner: towards automatic data extraction from large web sites. In: Proceedings of the 27th International Conference on Very Large Data Bases; 2001.Google Scholar
  4. 4.
    Kistler T, Marais H. WebL – a programming language for the web. Comput Netw ISDN Syst. 1998;30(1–7):259–70.CrossRefGoogle Scholar
  5. 5.
    Knoblock CA, Lerman K, Minton S, Muslea I. Accurately and reliably extracting data from the web: a machine learning approach. In: Szczepaniak PS, Segovia J, Kacprzyk J, Zadeh LA, editors. Intelligent exploration of the web. Heidelberg: Physica-Verlag; 2003. p. 275–87.CrossRefGoogle Scholar
  6. 6.
    Kushmerick N. Wrapper induction: efficiency and expressiveness. Artif Intell. 2000;118(1–2):15–68. Special issue on Intelligent Internet Systems.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Laender AHF, Ribeiro-Neto BA, da Silva AS, Teixeira JS. A brief survey of web data extraction tools. ACM SIGMOD Rec. 2002;31(2):84–93.CrossRefGoogle Scholar
  8. 8.
    Liu L, Pu C, Han W. XWRAP: an XML-enabled wrapper construction system for web information sources. In: Proceedings of the 16th International Conference on Data Engineering; 2000.Google Scholar
  9. 9.
    Muslea I, Minton S, Knoblock CA. Hierarchical wrapper induction for semistructured information sources. J Auton Agents Multi-Agent Syst. 2001;4(1–2):93–114.CrossRefGoogle Scholar
  10. 10.
    Sahuguet A, Azavant F. Building intelligent web applications using lightweight wrappers. Data Knowl Eng. 2000;36(3):283–316.zbMATHCrossRefGoogle Scholar
  11. 11.
    Spertus E, Andrea Stein L. Squeal: structured queries on the Web. In: Proceedings of the 9th International World-Wide Web Conference; 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.VMWareSeattleUSA

Section editors and affiliations

  • Georg Gottlob
    • 1
  1. 1.Computing Lab.Oxford Univ.OxfordUK