Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Iconic Displays

  • Georges GrinsteinEmail author
  • Damon Andrew Berry
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1130


Glyphs; Icon; Iconographics


Iconic displays are visualizations that generalize traditional displays (especially scatterplots) where each record, instead of being drawn as a point, is represented by a more general primitive called an icon or glyph. The goals are to harness human perception, especially texture, and to display many more parameters. Whereas a pixel is driven by three data values from some color model (typically red, green, and blue) an icon is a geometric object driven by potentially many values, with some icons displaying over 30. Some icons are drawn using lines, some using colored areas, some move and vibrate, and some even have sound output. Some iconic displays drop the Cartesian base of the underlying display and use alternative layout techniques. However, in all of these, the key defining factor is the representation of a record in a visualization by a very general, most often geometric, primitive, with the goal of producing more...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bergeron RD, Grinstein GG. A reference model for scientific visualization. In: Proceedings of the European Computer Graphics Conference and Exhibition; 1989. p. 393–9.Google Scholar
  2. 2.
    Bertin J. Semiology of graphics. Madison: The University of Wisconsin Press (Original work published in 1967); 1983.Google Scholar
  3. 3.
    Chambers JM, Cleveland WS, Kleiner B, Tukey PA. Graphical methods for data analysis. Belmont: Wadsworth; 1983.zbMATHGoogle Scholar
  4. 4.
    Chernoff H. The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc. 1973;68(342):361–8.CrossRefGoogle Scholar
  5. 5.
    Flury B, Riedwyl H. Graphical representation of multivariate data by means of asymmetrical faces. J Am Stat Assoc. 1981;76(376):757–65.CrossRefGoogle Scholar
  6. 6.
    Gibson JJ. The ecological approach to visual perception. Boston: Houghton-Mifflin; 1979.Google Scholar
  7. 7.
    Grinstein G, Pickett R, Williams MG. EXVIS: an exploratory visualization environment. In: Proceedings of the Graphics Interface; 1989.Google Scholar
  8. 8.
    Healey CG, Booth KS, Enns JT. Visualizing real-time multivariate data using preattentive processing. ACM Trans Model Comput Simul. 1995;5(3):190–221.CrossRefGoogle Scholar
  9. 9.
    Julesz B. Textons, the elements of texture perception, and their interactions. Nature. 1981;290(5802):91–7.CrossRefGoogle Scholar
  10. 10.
    Kindlmann G, Weinstein D, Lee A, Toga A, Thompson P. Visualization of anatomic covariance tensor fields. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2004. p. 1842–5.Google Scholar
  11. 11.
    Levkowitz H. Color icons: merging color and texture perception for integrated visualization of multiple parameters. In: Proceedings of the IEEE Conference on Visualization; 1991. p. 164–70.Google Scholar
  12. 12.
    Perlman J. Visualizing network security events using compound glyphs from a service-oriented perspective. 2007. Available at: http://www.csee.umbc.edu/gavl/theses/jpearlman.pdf.
  13. 13.
    Pickett RM, Grinstein GG. Iconographic displays for visualizing multidimensional data. In: Proceedings of the 1988 IEEE Conference on Systems, Man and Cybernetics; 1988. p. 514–8.Google Scholar
  14. 14.
    Pickett RM, Grinstein G, Levkowitz H, Smith S. Harnessing preattentive perceptual processes in visualization. In: Perceptual issues in visualization. New York: Springer; 1995. p. 33–45.CrossRefGoogle Scholar
  15. 15.
    Pinkney D. Intelligent Iconic Visualization. Ph.D thesis, University of Massachusetts, Lowell. 1997.Google Scholar
  16. 16.
    Smith S, Bergeron R, Grinstein G. Stereophonic and surface sound generation for exploratory data analysis. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; 1990.Google Scholar
  17. 17.
    Ward M. A taxonomy of glyph placement strategies for multidimensional data visualization. Inf. Vis. 2002;1(3/4):194–210.CrossRefGoogle Scholar
  18. 18.
    Wittenbrink C, Pang A, Lodha S. Glyphs for visualizing uncertainty in vector fields. IEEE Trans Vis Comput Graph. 1996;2(3):266–79.CrossRefGoogle Scholar
  19. 19.
    Yang F, Goodell H, Pickett R, Bobrow R, Baumann A, Gee A, Grinstein GG. Data exploration combining kinetic and static visualization displays. In: Proceedings of the 4th International Conference on Coordinated & Multiple Views in Exploratory Visualization; 2006. p. 21–30.Google Scholar
  20. 20.
    Zhang X, Pazner M. The icon imagemap technique for multivariate geospatial data visualization: approach and software. Cartogr Geogr Inf Sci. 2004;31(1):29–41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MassachusettsLowellUSA

Section editors and affiliations

  • Daniel A. Keim
    • 1
  1. 1.Computer Science DepartmentUniversity of KonstanzKonstanzGermany