Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Object Recognition

  • Ming-Hsuan YangEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1042


Object identification; Object labeling


Object recognition is concerned with determining the identity of an object being observed in the image from a set of known labels. Oftentimes, it is assumed that the object being observed has been detected or there is a single object in the image.

Historical Background

As the holy grail of computer vision research is to tell a story from a single image or a sequence of images, object recognition has been studied for more than four decades [9, 22]. Significant efforts have been spent to develop representation schemes and algorithms aiming at recognizing generic objects in images taken under different imaging conditions (e.g., viewpoint, illumination, and occlusion). Within a limited scope of distinct objects, such as handwritten digits, fingerprints, faces, and road signs, substantial success has been achieved. Object recognition is also related to content-based image retrieval and multimedia indexing as a number of generic...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRefGoogle Scholar
  2. 2.
    Belhumeur P, Kriegman D. What is the set of images of an object under all possible illumination conditions. Int J Comput Vis. 1998;28(3):1–16.CrossRefGoogle Scholar
  3. 3.
    Daugman J. Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons. Proc IEEE. 2006;94(11):1927–35.CrossRefGoogle Scholar
  4. 4.
    Edelman S. Representation and recognition in vision. Cambridge: MIT; 1999.Google Scholar
  5. 5.
    Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition; 2003. p. 264–71.Google Scholar
  6. 6.
    Lades M, Vorbrüggen JC, Buhmann J, Lange J, von der Malsburg C, Würtz RP, Konen W. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput. 1993;42(3):300–11.CrossRefGoogle Scholar
  7. 7.
    Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.CrossRefGoogle Scholar
  8. 8.
    Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Marr D. Vision. San Francisco: W.H. Freeman and Company; 1982.Google Scholar
  10. 10.
    Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Analy Machine Intell. 2005;27(10):1615–30.CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L. A comparison of affine region detectors. Int J Comput Vis. 2006;65(1/2):43–72.Google Scholar
  12. 12.
    Mundy J. Object recognition in the geometric era: a retrospective. In: Ponce J, Hebert M, Schmid C, Zisserman A, editors. Toward category-level object recognition. Springer: Berlin; 2006. p. 3–29.CrossRefGoogle Scholar
  13. 13.
    Zisserman A, Mundy J. Geometric invariance in computer vision. Cambridge: MIT; 1992.Google Scholar
  14. 14.
    Murase H, Nayar SK. Visual learning and recognition of 3-D objects from appearance. Int J Comput Vis. 1995;14(1):5–24.CrossRefGoogle Scholar
  15. 15.
    Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition; 2006. p. 2161–8.Google Scholar
  16. 16.
    Poggio T, Edelman S. A network that learns to recognize 3D objects. Nature. 1990;343(6255):263–6.CrossRefGoogle Scholar
  17. 17.
    Ponce J, Hebert M, Schmid C, Zisserman A. Toward category-level object recognition. Berlin: Springer; 2006.CrossRefGoogle Scholar
  18. 18.
    Pontil M, Verri A. Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell. 1998;20(6):637–46.CrossRefGoogle Scholar
  19. 19.
    Roth D, Yang M-H, Ahuja N. Learning to recognize objects. Neural Comput. 2002;14(5):1071–104.zbMATHCrossRefGoogle Scholar
  20. 20.
    Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th IEEE Conference on Computer Vision; 2003. p. 1470–7.Google Scholar
  21. 21.
    Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3(1):71–86.CrossRefGoogle Scholar
  22. 22.
    Ullman S. High-level vision: object recognition and visual recognition. Cambridge: MIT; 1996.zbMATHGoogle Scholar
  23. 23.
    Zhao W, Chellappa R, Rosenfeld A, Phillips JP. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of California at MercedMercedUSA

Section editors and affiliations

  • Vincent Oria
    • 1
  • Shin'ichi Satoh
    • 2
  1. 1.Dept. of Computer ScienceNew Jersey Inst. of TechnologyNewarkUSA
  2. 2.Digital Content and Media Sciences ReseaMultimedia Information Research DivisionNational Institute of InformaticsTokyoJapan