Advertisement

Effects of Nutrition on Neutrophil Function in Preclinical Studies

  • Keisuke Kohama
  • Joji Kotani
  • Atsunori Nakao
Reference work entry

Abstract

Although neutrophils are an essential component of natural immunity, their activities must be carefully regulated to prevent detrimental prolonging of inflammation. To resolve inflammation, neutrophil recruitment to the affected tissue must be blocked, and neutrophils in the tissue must be removed by apoptosis and phagocytosis. Polyunsaturated fatty acids (PUFAs) are a major dietary regulator of immune function. N-3 PUFAs and n-6 PUFAs modulate the inflammatory response in neutrophils. N-3 PUFA exhibits anti-inflammatory activities through neutrophils using multiple mechanisms including decreasing neutrophil chemotaxis in response to inflammatory stimuli, reducing neutrophil adhesion to the vascular endothelium and neutrophil transmigration across the endothelium and into the affected tissue, and promotes the synthesis of resolvins and protectins, inflammation-resolving lipids that promote neutrophil apoptosis and phagocytosis. Sepsis and acute respiratory distress syndrome, common conditions in critical care patients, are both a result of dysregulated or excessive inflammation. Preclinical data obtained from rodent models and cell culture studies support a role in nutritional immunomodulation using n-3 PUFAs or their derivatives in patients with sepsis or acute lung injury.

Keywords

Acute Lung Injury Parenteral Nutrition Systemic Inflammatory Response Syndrome Multiple Organ Dysfunction Syndrome Lipid Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

ARDS

Acute respiratory distress syndrome

COX

Cyclooxygenase

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

G-CSF

Granulocyte-colony stimulating factor

GM-CSF

Granulocyte–macrophage colony-stimulating factor

ICAM-1

Intercellular adhesion molecule 1

LOX

Lipoxygenase

LPS

Lipopolysaccharide

LT

Leukotriene

LTB4

Leukotriene B4

LTB5

Leukotriene B5

PG

Prostaglandin

PGD2

Prostaglandin D2

PGD3

Prostaglandin D3

PGE2

Prostaglandin E2

PMN

Polymorphonuclear cell

PUFAs

Polyunsaturated fatty acids

ROS

Reactive oxygen species

RvD1

Resolvin D1

RvD2

Resolvin D2

RvE1

Resolvin E1

SIRS

Systemic inflammatory response syndrome

TNF-α

Tumor necrosis factor-α

TX

Thromboxane

VCAM-1

Vascular cell adhesion molecule 1

References

  1. Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett. 2001;487(3):318–22.CrossRefPubMedGoogle Scholar
  2. Aoki H, Hisada T, Ishizuka T, Utsugi M, Kawata T, Shimizu Y, Okajima F, Dobashi K, Mori M. Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun. 2008;367(2):509–15.CrossRefPubMedGoogle Scholar
  3. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178(6):3912–7.CrossRefPubMedGoogle Scholar
  4. Barcellos-de-Souza P, Canetti C, Barja-Fidalgo C, Arruda MA. Leukotriene B(4) inhibits neutrophil apoptosis via NADPH oxidase activity: redox control of NF-kappaB pathway and mitochondrial stability. Biochim Biophys Acta. 2012;1823(10):1990–7.CrossRefPubMedGoogle Scholar
  5. Bargut TC, Ferreira TP, Daleprane JB, Martins MA, Silva PM, Aguila MB. Fish oil has beneficial effects on allergen-induced airway inflammation and hyperreactivity in mice. PLoS ONE. 2013;8(9):e75059.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.CrossRefPubMedGoogle Scholar
  7. Calder PC. n-3 fatty acids, inflammation, and immunity–relevance to postsurgical and critically ill patients. Lipids. 2004;39(12):1147–61.CrossRefPubMedGoogle Scholar
  8. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62.PubMedPubMedCentralGoogle Scholar
  9. Calderon Artero P, Champagne C, Garigen S, Mousa S, Block R. Fish oil metabolites: translating promising findings from bench to bedside to reduce cardiovascular disease. J Glycom Lipid. 2012;2(1).Google Scholar
  10. Chanock SJ, el Benna J, Smith RM, Babior BM. The respiratory burst oxidase. J Biol Chem. 1994;269(40):24519–22.PubMedGoogle Scholar
  11. Chen F, Fan XH, Wu YP, Zhu JL, Wang F, Bo LL, Li JB, Bao R, Deng XM. Resolvin D1 improves survival in experimental sepsis through reducing bacterial load and preventing excessive activation of inflammatory response. Eur J Clin Microbiol Infect Dis. 2014;33(3):457–64.CrossRefPubMedGoogle Scholar
  12. Chilvers ER, Cadwallader KA, Reed BJ, White JF, Condliffe AM. The function and fate of neutrophils at the inflamed site: prospects for therapeutic intervention. J R Coll Physicians Lond. 2000;34(1):68–74.PubMedGoogle Scholar
  13. Collie-Duguid ES, Wahle KW. Inhibitory effect of fish oil N-3 polyunsaturated fatty acids on the expression of endothelial cell adhesion molecules. Biochem Biophys Res Commun. 1996;220(3):969–74.CrossRefPubMedGoogle Scholar
  14. De Caterina R, Cybulsky MI, Clinton SK, Gimbrone Jr MA, Libby P. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb. 1994;14(11):1829–36.CrossRefPubMedGoogle Scholar
  15. Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, Uddin M, Croze RH, Carlo T, Pfeffer MA, Levy BD. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol. 2013;6(2):256–66.CrossRefPubMedGoogle Scholar
  16. El Kebir D, Gjorstrup P, Filep JG. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci U S A. 2012;109(37):14983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eyles JL, Roberts AW, Metcalf D, Wicks IP. Granulocyte colony-stimulating factor and neutrophils–forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol. 2006;2(9):500–10.CrossRefPubMedGoogle Scholar
  18. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12(11):1035–44.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gaudreault E, Thompson C, Stankova J, Rola-Pleszczynski M. Involvement of BLT1 endocytosis and Yes kinase activation in leukotriene B4-induced neutrophil degranulation. J Immunol. 2005;174(6):3617–25.CrossRefPubMedGoogle Scholar
  20. Glatzle J, Kasparek MS, Mueller MH, Binder F, Meile T, Kreis ME, Konigsrainer A, Steurer W. Enteral immunonutrition during sepsis prevents pulmonary dysfunction in a rat model. J Gastrointest Surg. 2007;11(6):719–24.CrossRefPubMedGoogle Scholar
  21. Han YY, Lai SL, Ko WJ, Chou CH, Lai HS. Effects of fish oil on inflammatory modulation in surgical intensive care unit patients. Nutr Clin Pract. 2012;27(1):91–8.CrossRefPubMedGoogle Scholar
  22. Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol. 2008;9(8):873–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heyland DK, MacDonald S, Keefe L, Drover JW. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA. 1998;280(23):2013–9.CrossRefPubMedGoogle Scholar
  24. Hsiao HM, Sapinoro RE, Thatcher TH, Croasdell A, Levy EP, Fulton RA, Olsen KC, Pollock SJ, Serhan CN, Phipps RP, Sime PJ. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS ONE. 2013;8(3):e58258.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jimenez MF, Watson RW, Parodo J, Evans D, Foster D, Steinberg M, Rotstein OD, Marshall JC. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg. 1997;132(12):1263–9, discussion 1269–70.CrossRefPubMedGoogle Scholar
  26. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259–87.PubMedGoogle Scholar
  27. Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, Irimia D, Toner M, Serhan CN. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J Immunol. 2008;181(12):8677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim C, Dinauer MC. Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol. 2001;166(2):1223–32.CrossRefPubMedGoogle Scholar
  29. Klein JB, Buridi A, Coxon PY, Rane MJ, Manning T, Kettritz R, McLeish KR. Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cell Signal. 2001;13(5):335–43.CrossRefPubMedGoogle Scholar
  30. Kohama K, Nakao A, Terashima M, Aoyama-Ishikawa M, Shimizu T, Harada D, Nakayama M, Yamashita H, Fujiwara M, Kotani J. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model. J Clin Biochem Nutr. 2014;54(2):116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kotani J, Avallone NJ, Lin E, Goshima M, Gandhi K, Lowry SF, Calvano SE. Fas-mediated neutrophil apoptosis and associated A1 protein expression during systemic inflammation are regulated independently of both tumor necrosis factor receptors. Shock. 2003;19(3):201–7.CrossRefPubMedGoogle Scholar
  32. Kotani J, Avallone NJ, Lin E, Goshima M, Lowry SF, Calvano SE. Tumor necrosis factor receptor regulation of bone marrow cell apoptosis during endotoxin-induced systemic inflammation”. Shock. 2006;25(5):464–71.CrossRefPubMedGoogle Scholar
  33. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, van den Berghe G, Wernerman J, Dgem, Ebner C, Hartl W, Heymann C, Spies C, Espen. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25(2):210–23.CrossRefPubMedGoogle Scholar
  34. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991;65(5):859–73.CrossRefPubMedGoogle Scholar
  35. Lee TH, Menica-Huerta JM, Shih C, Corey EJ, Lewis RA, Austen KF. Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product. J Biol Chem. 1984;259(4):2383–9.PubMedGoogle Scholar
  36. Lee E, Lindo T, Jackson N, Meng-Choong L, Reynolds P, Hill A, Haswell M, Jackson S, Kilfeather S. Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med. 1999;160(6):2079–85.CrossRefPubMedGoogle Scholar
  37. Levy BD, Kohli P, Gotlinger K, Haworth O, Hong S, Kazani S, Israel E, Haley KJ, Serhan CN. Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J Immunol. 2007;178(1):496–502.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, Chen L, Xu D, Wen F. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARgamma/NF-kappaB pathway. Respir Res. 2012;13:110.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med. 2008;34(11):1980–90.CrossRefPubMedGoogle Scholar
  40. Matute-Bello G, Liles WC, Radella 2nd F, Steinberg KP, Ruzinski JT, Jonas M, Chi EY, Hudson LD, Martin TR. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997;156(6):1969–77.CrossRefPubMedGoogle Scholar
  41. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G, A. S. P. E. N. Board of Directors, American College of Critical Care Medicine and Society of Critical Care Medicine. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316.CrossRefPubMedGoogle Scholar
  42. Norling LV, Dalli J, Flower RJ, Serhan CN, Perretti M. Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions. Arterioscler Thromb Vasc Biol. 2012;32(8):1970–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J Clin Invest. 2011;121(2):569–81.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oz HS, Chen TS, Neuman M. Nutrition intervention: a strategy against systemic inflammatory syndrome. JPEN J Parenter Enteral Nutr. 2009;33(4):380–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palmer AJ, Ho CK, Ajibola O, Avenell A. The role of omega-3 fatty acid supplemented parenteral nutrition in critical illness in adults: a systematic review and meta-analysis. Crit Care Med. 2013;41(1):307–16.CrossRefPubMedGoogle Scholar
  46. Pontes-Arruda A, Demichele S, Seth A, Singer P. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr. 2008;32(6):596–605.CrossRefPubMedGoogle Scholar
  47. Saba S, Soong G, Greenberg S, Prince A. Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am J Respir Cell Mol Biol. 2002;27(5):561–7.CrossRefPubMedGoogle Scholar
  48. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989;83(3):865–75.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2(12):965–75.CrossRefPubMedGoogle Scholar
  50. Seki H, Fukunaga K, Arita M, Arai H, Nakanishi H, Taguchi R, Miyasho T, Takamiya R, Asano K, Ishizaka A, Takeda J, Levy BD. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol. 2010;184(2):836–43.CrossRefPubMedGoogle Scholar
  51. Serhan CN. Systems approach with inflammatory exudates uncovers novel anti-inflammatory and pro-resolving mediators. Prostaglandins Leukot Essent Fatty Acids. 2008;79(3–5):157–63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111(10):5922–43.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009;206(1):15–23.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C, Espen. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28(4):387–400.CrossRefPubMedGoogle Scholar
  57. Singer P, Shapiro H, Bendavid I. Behind the ESPEN guidelines on parenteral nutrition in the ICU. Minerva Anestesiol. 2011;77(11):1115–20.PubMedGoogle Scholar
  58. Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, Flower RJ, Perretti M, Serhan CN. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461(7268):1287–91.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stankova J, Turcotte S, Harris J, Rola-Pleszczynski M. Modulation of leukotriene B4 receptor-1 expression by dexamethasone: potential mechanism for enhanced neutrophil survival. J Immunol. 2002;168(7):3570–6.CrossRefPubMedGoogle Scholar
  60. Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem. 2007;282(13):9323–34.CrossRefPubMedGoogle Scholar
  61. Tappy L, Berger MM, Schwarz JM, Schneiter P, Kim S, Revelly JP, Chiolero R. Metabolic effects of parenteral nutrition enriched with n-3 polyunsaturated fatty acids in critically ill patients. Clin Nutr. 2006;25(4):588–95.CrossRefPubMedGoogle Scholar
  62. Terashima M, Aoyama-Ishikawa M, Ueda T, Hagi A, Usami M, Nakao A, Kotani J. The effects of n-3 polyunsaturated fatty acid-rich total parenteral nutrition on neutrophil apoptosis in a rat endotoxemia. J Clin Biochem Nutr. 2013;52(2):154–9.CrossRefPubMedGoogle Scholar
  63. Tull SP, Yates CM, Maskrey BH, O'Donnell VB, Madden J, Grimble RF, Calder PC, Nash GB, Rainger GE. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS Biol. 2009;7(8):e1000177.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Uddin M, Levy BD. Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res. 2011;50(1):75–88.CrossRefPubMedGoogle Scholar
  65. Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–9.CrossRefPubMedGoogle Scholar
  66. Wang B, Gong X, Wan JY, Zhang L, Zhang Z, Li HZ, Min S. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther. 2011;24(4):434–41.CrossRefPubMedGoogle Scholar
  67. Wanten GJ, Calder PC. Immune modulation by parenteral lipid emulsions. Am J Clin Nutr. 2007;85(5):1171–84.PubMedGoogle Scholar
  68. Yamada H, Yoshida M, Nakano Y, Suganami T, Satoh N, Mita T, Azuma K, Itoh M, Yamamoto Y, Kamei Y, Horie M, Watada H, Ogawa Y. In vivo and in vitro inhibition of monocyte adhesion to endothelial cells and endothelial adhesion molecules by eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2008;28(12):2173–9.CrossRefPubMedGoogle Scholar
  69. Yates CM, Tull SP, Madden J, Calder PC, Grimble RF, Nash GB, Rainger GE. Docosahexaenoic acid inhibits the adhesion of flowing neutrophils to cytokine stimulated human umbilical vein endothelial cells. J Nutr. 2011;141(7):1331–4.CrossRefPubMedGoogle Scholar
  70. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med. 2000;192(3):421–32.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Emergency, Disaster and Critical Care MedicineHyogo College of MedicineNishinomiyaJapan

Personalised recommendations