Plant Circadian Network

  • Jordi Malapeira
  • Reyes Benlloch
  • Rossana Henriques
  • Paloma Mas
Reference work entry
Part of the The Plant Sciences book series (PLANTSCI, volume 2)


  • The circadian clock generates biological rhythms with a period of 24 h.

  • Circadian clock function is essential for plant physiology and development and provides an adaptive advantage.

  • The circadian clock is synchronized by changes in environmental signals.

  • Pre- and posttranscriptional mechanisms regulate the expression and activity of the circadian oscillator.

  • The expression of many genes and key metabolic and developmental processes are controlled by the circadian clock.


Circadian Clock Clock Gene Circadian Regulation Circadian Period Circadian Clock Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Carré I, Veflingstad SR. Emerging design principles in the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:393–8.PubMedCrossRefGoogle Scholar
  2. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 2011;62:335–64.PubMedCrossRefGoogle Scholar
  3. Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet. 2004;38:87–117.PubMedCrossRefGoogle Scholar
  4. de Montaigu A, Tóth R, Coupland G. Plant development goes like clockwork. Trends Genet. 2010;26:296–306.PubMedCrossRefGoogle Scholar
  5. Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet. 2010;44:419–44.PubMedCrossRefGoogle Scholar
  6. Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol. 2009;60:357–77.PubMedCrossRefGoogle Scholar
  7. Haydon MJ, Hearn TJ, Bell LJ, Hannah MA, Webb AAR. Metabolic regulation of circadian clocks. Semin Cell Dev Biol. 2013;24:414–21.PubMedCrossRefGoogle Scholar
  8. Kinmonth-Schultz HA, Golembeski GS, Imaizumi T. Circadian clock-regulated physiological outputs: dynamic responses in nature. Semin Cell Dev Biol. 2013;24:407–13.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Kusakina J, Dodd AN. Phosphorylation in the plant circadian system. Trends Plant Sci. 2012;17:575–83.PubMedCrossRefGoogle Scholar
  10. Losi A, Gärtner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol. 2012;63:49–72.PubMedCrossRefGoogle Scholar
  11. Más P, Yanovsky MJ. Time for circadian rhythms: plants get synchronized. Curr Opin Plant Biol. 2009;12:574–9.PubMedCrossRefGoogle Scholar
  12. McClung CR, Davis SJ. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol. 2010;20:R1086–92.PubMedCrossRefGoogle Scholar
  13. McWatters HG, Devlin PF. Timing in plants – a rhythmic arrangement. FEBS Lett. 2011;585:1474–84.PubMedCrossRefGoogle Scholar
  14. Millar AJ. Input signals to the plant circadian clock. J Exp Bot. 2004;55:277–83.PubMedCrossRefGoogle Scholar
  15. Nagel DH, Kay SA. Complexity in the wiring and regulation of plant circadian networks. Curr Biol. 2012;22:R648–57.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ. Alternative splicing at the right time. RNA Biol. 2011;8:954–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Song YH, Ito S, Imaizumi T. Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol. 2010;13:594–603.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Staiger D, Green R. RNA-based regulation in the plant circadian clock. Trends Plant Sci. 2011;16:517–23.PubMedCrossRefGoogle Scholar
  19. Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci. 2011;68:71–83.PubMedCrossRefGoogle Scholar
  20. Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15:282–92.PubMedCrossRefGoogle Scholar

Further Reading

  1. Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13:627–39.PubMedCrossRefGoogle Scholar
  2. Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:383–92.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Devlin PF, Kay SA. Circadian photoperception. Annu Rev Physiol. 2001;63:677–94.PubMedCrossRefGoogle Scholar
  4. Graf A, Smith AM. Starch and the clock: the dark side of plant productivity. Trends Plant Sci. 2011;16:169–75.PubMedCrossRefGoogle Scholar
  5. Henriques R, Mas P. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:399–406.PubMedCrossRefGoogle Scholar
  6. Hotta C, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 2007;30:333–49.PubMedCrossRefGoogle Scholar
  7. McClung CR. The genetics of plant clocks. In: Stuart B, editor. Advances in genetics. Elsevier Academic Press; 2011;74:105–39.Google Scholar
  8. McClung CR, Gutiérrez RA. Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev. 2010;20:588–98.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Sanchez A, Shin J, Davis SJ. Abiotic stress and the plant circadian clock. Plant Signal Behav. 2011;6:223–31.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Yamashino T. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2013;77:10–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jordi Malapeira
    • 1
    • 2
  • Reyes Benlloch
    • 1
    • 2
  • Rossana Henriques
    • 1
    • 2
  • Paloma Mas
    • 1
    • 2
  1. 1.Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)BarcelonaSpain
  2. 2.Consortium CSIC-IRTA-UAB-UBCenter for Research in Agricultural Genomics (CRAG), Parc de Recerca UABBarcelonaSpain

Personalised recommendations