Skip to main content

Plant Circadian Network

  • Reference work entry
Molecular Biology

Part of the book series: The Plant Sciences ((PLANTSCI,volume 2))

  • 4368 Accesses

Introduction

The circadian clock is a cellular mechanism present in almost all organisms examined to date. This timing device is able to perceive environmental changes as an indication of passing time and use this information to generate rhythms in multiple biological processes. It was proposed that the 24-h rhythms generated by the circadian clock provide an adaptive advantage by allowing the anticipation of the environmental changes and by synchronizing the biological activities to the most appropriate times during the day or night. The mechanisms responsible for generating and maintaining the rhythms are complex and require the orchestrated function of many players. For optimal growth and survival, plants rely on a sophisticated network of perception and responses to the fluctuating environment. The circadian clock is placed at the center of this network, connecting multiple input and output signals essential at all stages during the plant life cycle.

Despite the pervasive influence...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carré I, Veflingstad SR. Emerging design principles in the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:393–8.

    Article  PubMed  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 2011;62:335–64.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet. 2004;38:87–117.

    Article  PubMed  CAS  Google Scholar 

  • de Montaigu A, Tóth R, Coupland G. Plant development goes like clockwork. Trends Genet. 2010;26:296–306.

    Article  PubMed  Google Scholar 

  • Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet. 2010;44:419–44.

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol. 2009;60:357–77.

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Hearn TJ, Bell LJ, Hannah MA, Webb AAR. Metabolic regulation of circadian clocks. Semin Cell Dev Biol. 2013;24:414–21.

    Article  PubMed  CAS  Google Scholar 

  • Kinmonth-Schultz HA, Golembeski GS, Imaizumi T. Circadian clock-regulated physiological outputs: dynamic responses in nature. Semin Cell Dev Biol. 2013;24:407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusakina J, Dodd AN. Phosphorylation in the plant circadian system. Trends Plant Sci. 2012;17:575–83.

    Article  PubMed  CAS  Google Scholar 

  • Losi A, Gärtner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol. 2012;63:49–72.

    Article  PubMed  CAS  Google Scholar 

  • Más P, Yanovsky MJ. Time for circadian rhythms: plants get synchronized. Curr Opin Plant Biol. 2009;12:574–9.

    Article  PubMed  Google Scholar 

  • McClung CR, Davis SJ. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol. 2010;20:R1086–92.

    Article  PubMed  CAS  Google Scholar 

  • McWatters HG, Devlin PF. Timing in plants – a rhythmic arrangement. FEBS Lett. 2011;585:1474–84.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ. Input signals to the plant circadian clock. J Exp Bot. 2004;55:277–83.

    Article  PubMed  CAS  Google Scholar 

  • Nagel DH, Kay SA. Complexity in the wiring and regulation of plant circadian networks. Curr Biol. 2012;22:R648–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ. Alternative splicing at the right time. RNA Biol. 2011;8:954–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song YH, Ito S, Imaizumi T. Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol. 2010;13:594–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Green R. RNA-based regulation in the plant circadian clock. Trends Plant Sci. 2011;16:517–23.

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci. 2011;68:71–83.

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15:282–92.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13:627–39.

    Article  PubMed  CAS  Google Scholar 

  • Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:383–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devlin PF, Kay SA. Circadian photoperception. Annu Rev Physiol. 2001;63:677–94.

    Article  PubMed  CAS  Google Scholar 

  • Graf A, Smith AM. Starch and the clock: the dark side of plant productivity. Trends Plant Sci. 2011;16:169–75.

    Article  PubMed  CAS  Google Scholar 

  • Henriques R, Mas P. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock. Semin Cell Dev Biol. 2013;24:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Hotta C, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 2007;30:333–49.

    Article  PubMed  CAS  Google Scholar 

  • McClung CR. The genetics of plant clocks. In: Stuart B, editor. Advances in genetics. Elsevier Academic Press; 2011;74:105–39.

    Google Scholar 

  • McClung CR, Gutiérrez RA. Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev. 2010;20:588–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez A, Shin J, Davis SJ. Abiotic stress and the plant circadian clock. Plant Signal Behav. 2011;6:223–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashino T. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2013;77:10–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Mas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Malapeira, J., Benlloch, R., Henriques, R., Mas, P. (2014). Plant Circadian Network. In: Howell, S. (eds) Molecular Biology. The Plant Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7570-5_6

Download citation

Publish with us

Policies and ethics