Plant Telomeres and Telomerase

  • Andrew D. L. Nelson
  • Mark A. Beilstein
  • Dorothy E. Shippen
Reference work entry
Part of the The Plant Sciences book series (PLANTSCI, volume 2)

Abstract

  • The essential function of the telomere is to facilitate the complete replication of the chromosome terminus and to prevent the terminus from eliciting a DNA damage response that would cause genome instability.

  • Telomere failure can occur from the loss of telomere capping proteins or the prolonged absence of telomerase.

  • Because of its extraordinary tolerance to genome instability, Arabidopsis thaliana is a powerful model for telomere biology.

  • Telomerase expression is highly regulated and in both plants and animals is confined to cells with long-term proliferation capacity.

  • Unlike vertebrate telomeres, plant telomeres are asymmetric with one end of the chromosome terminating in a 3′ single-stranded overhang and the other in a blunt end.

  • The protein composition of plant telomeres reveals an evolutionary bridge with yeast and vertebrates; some factors are more like yeast, others more like vertebrates, and still others unique to plants.

  • The identification and characterization of the CST complex in Arabidopsis paved the way for understanding the molecular basis of human stem cell disease.

  • Gene duplication and diversification have had made a significant impact on the composition and regulation of Arabidopsis telomerase.

  • The telomerase RNA component is evolving very rapidly in plants and is giving rise to novel regulatory mechanisms.

  • De novo telomere formation by telomerase at internal double-strand breaks in the DNA causes loss of chromosomal DNA and must be strictly regulated to ensure faithful repair of DNA damage.

Keywords

Migration Maize Depression Europe Recombination 

References

  1. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31:9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Autexier C, Lue NF. The structure and function of telomerase reverse transcriptase. Annu Rev Biochem. 2006;75:493–517.PubMedCrossRefGoogle Scholar
  3. Cifuentes-Rojas C, Shippen DE. Telomerase regulation. Mutat Res. 2012;730:20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. de Lange T. How telomeres solve the end-protection problem. Science. 2009;326:948–52.PubMedCrossRefPubMedCentralGoogle Scholar
  5. de Lange T, Lundblad V, Blackburn EH. Telomeres. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2006.Google Scholar
  6. Egan ED, Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18:1747–59.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA. Synthetic chromosome platforms in plants. Annu Rev Plant Biol. 2012;63:307–30.PubMedCrossRefGoogle Scholar
  8. Linger BR, Price CM. Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol. 2009;44:434–46.PubMedCrossRefPubMedCentralGoogle Scholar
  9. McKnight TD, Riha K, Shippen DE. Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol. 2002;48:331–7.PubMedCrossRefGoogle Scholar
  10. Melek M, Shippen DE. Chromosome healing: spontaneous and programmed de novo telomere formation by telomerase. Bioessays. 1996;18:301–8.PubMedCrossRefGoogle Scholar
  11. Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res. 2012;730:28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Nelson AD, Shippen DE. Blunt-ended telomeres: an alternative ending to the replication and end protection stories. Genes Dev. 2012a;26:1648–52.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Nelson AD, Shippen DE. Surprises from the chromosome front: lessons from Arabidopsis on telomeres and telomerase. Cold Spring Harb Symp Quant Biol. 2012b;77:7–15.PubMedCrossRefGoogle Scholar
  14. O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11:171–81.PubMedPubMedCentralGoogle Scholar
  15. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.PubMedCrossRefGoogle Scholar
  16. Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE. Evolution of CST function in telomere maintenance. Cell Cycle. 2010;9:3157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Riha K, Heacock ML, Shippen DE. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu Rev Genet. 2006;40:237–77.PubMedCrossRefGoogle Scholar
  18. Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.PubMedCrossRefGoogle Scholar
  19. Watson JM, Riha K. Comparative biology of telomeres: where plants stand. FEBS Lett. 2010;584:3752–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Watson JM, Riha K. Telomeres, aging, and plants: from weeds to Methuselah – a mini-review. Gerontology. 2011;57:129–36.PubMedCrossRefGoogle Scholar

Further Reading

  1. Amiard S, Depeiges A, Allain E, White CI, Gallego ME. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. Plant Cell. 2011;23:4254–65.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Cifuentes-Rojas C, Nelson AD, Boltz KA, Kannan K, She X, Shippen DE. An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev. 2012;26:2512–23.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Kazda A, Zellinger B, Rossler M, Derboven E, Kusenda B, Riha K. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012;26:1703–13.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Lee YW, Kim WT. Tobacco GTBP1, a homolog of human heterogeneous nuclear ribonucleoprotein, protects telomeres from aberrant homologous recombination. Plant Cell. 2010;22:2781–95.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Leehy KA, Lee JR, Song X, Renfrew KB, Shippen DE. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. Plant Cell. 2013;25:1343–54.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Riha K, McKnight TD, Griffing LR, Shippen DE. Living with genome instability: plant responses to telomere dysfunction. Science. 2001;291:1797–800.PubMedCrossRefGoogle Scholar
  7. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, Leehy K, Heacock M, Price CM, Shippen DE. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell. 2009;36:207–18.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B, Aufsatz W, Riha K. siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet. 2010;6:e1000986.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell. 2007;27:163–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrew D. L. Nelson
    • 1
  • Mark A. Beilstein
    • 1
  • Dorothy E. Shippen
    • 2
  1. 1.The School of Plant SciencesUniversity of ArizonaTucsonUSA
  2. 2.Department of Biochemistry and Biophysics, College of Agriculture and Life SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations