Skip to main content

Auxin Signaling in Plants

  • Reference work entry
  • 4362 Accesses

Part of the book series: The Plant Sciences ((PLANTSCI,volume 2))

Introduction

Plant hormones are small active molecules acting in concert to control many aspects of plant growth, development, and adaptive responses to environmental stimuli. Most plant hormones are small chemical molecules acting at rather low concentrations either locally or after short- or long-distance transport within the plant. Among these, the hormone auxin is involved in a multitude of biological processes and is often considered as the major phytohormone. The word auxin originates from the Greek word auxein, which literally means to grow/increase, a name befitting a hormone that was initially identified as a molecule stimulating shoot organ elongation. Since then, more subtle features about auxin’s regulation of the elongation response (either promoting or inhibiting the response) and many additional activities of the hormone have been demonstrated including tropisms, control of various aspects of cell division (gene expression and protein turnover of cell cycle regulators,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aichinger E, Villar CB, Di Mambro R, Sabatini S, Kohler C. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell. 2011;23(3):1047–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I, et al. A map of cell type-specific auxin responses. Mol Syst Biol. 2013;9:688.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Becker D, Hedrich R. Channelling auxin action: modulation of ion transport by indole-3- acetic acid. Plant Mol Biol. 2002;49(3–4):349–56.

    Article  PubMed  CAS  Google Scholar 

  • Boer DR, Freire-Rios A, van den Berg WA, Saaki T, Manfield IW, et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell. 2014;156(3):577–89.

    Article  PubMed  CAS  Google Scholar 

  • Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol. 2012;8(5):477–85.

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009;43:265–85.

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Ryu H, Rho S, Hill K, Smith S, et al. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol. 2014;16(1):66–76.

    Article  PubMed  CAS  Google Scholar 

  • Craddock C, Lavagi I, Yang Z. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 2012;22(9):492–501.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Del Bianco M, Kepinski S. Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol. 2011;3(1):a001578.

    PubMed  PubMed Central  Google Scholar 

  • Del Pozo JC, Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. J Exp Bot. 2013. doi:10.1093/jxb/ert1363.

    PubMed  Google Scholar 

  • Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci. 2013;4:398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci. 2013;4:419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol. 2007;10(5):453–60.

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G. Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions. Plant Sci. 2012;190:82–8.

    Article  PubMed  CAS  Google Scholar 

  • Jaillais Y, Chory J. Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol. 2010;17(6):642–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ma X, Lv S, Zhang C, Yang C. Histone deacetylases and their functions in plants. Plant Cell Rep. 2013;32(4):465–78.

    Article  PubMed  CAS  Google Scholar 

  • Mockaitis K, Estelle M. Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol. 2008;24:55–80.

    Article  PubMed  CAS  Google Scholar 

  • Nibau C, Wu HM, Cheung AY. RAC/ROP GTPases: “hubs” for signal integration and diversification in plants. Trends Plant Sci. 2006;11(6):309–15.

    Article  PubMed  CAS  Google Scholar 

  • Perrot-Rechenmann C. Cellular Responses to Auxin. Cold Spring Harb Perspect Biol. 2010; 2:a001446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierre-Jerome E, Moss BL, Nemhauser JL. Tuning the auxin transcriptional response. J Exp Bot. 2013;64(9):2557–63.

    Article  PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Varanasi SP, Mukherjee SK. Micro-regulators of auxin action. Plant Cell Rep. 2013;32(6):733–40.

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Kleine-Vehn J. AUXIN BINDING PROTEIN1: the outsider. Plant Cell. 2011;23(6):2033–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stuttmann J, Lechner E, Guerois R, Parker JE, Nussaume L, et al. COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J Biol Chem. 2009;284(12):7920–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M. Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol. 2002;49(3–4):411–26.

    PubMed  CAS  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T. Auxin activates the plasma membrane H + -ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 2012;159(2):632–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci. 2010;15(8):436–46.

    Article  PubMed  CAS  Google Scholar 

  • Tromas A, Paque S, Stierlé V, Quettier AL, Muller P, et al. AUXIN BINDING PROTEIN 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun. 2013;4:2496–504. doi:2410.1038/ncomms3496.

    Article  PubMed  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol. 2011;7:508. doi: 10.1038/msb.2011.39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA. 2008;105(28):9829–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10(6):385–97.

    Article  PubMed  CAS  Google Scholar 

  • Wendrich JR, Weijers D. The Arabidopsis embryo as a miniature morphogenesis model. New Phytol. 2013;199(1):14–25.

    Article  PubMed  Google Scholar 

  • Wu HM, Hazak O, Cheung AY, Yalovsky S. RAC/ROP GTPases and auxin signaling. Plant Cell. 2011;23(4):1208–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Z. Cell polarity signaling in Arabidopsis. Annu Rev Cell Dev Biol. 2008;24:551–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Dai N, Chen J, Nagawa S, Cao M, et al. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science. 2014;343(6174):1025–8.

    Article  PubMed  CAS  Google Scholar 

Further Readings

  • Eshel A, Beeckman T, editors. Plant Roots: the hidden half. 4th ed. Boca Raton: CRC Press/Taylor and Francis Group; 2013. Chapters 3 to 20.

    Google Scholar 

  • Estelle M, Weijers D, Ljung K, Leyser O, editors. Auxin signalling, from synthesis to systems biology. New York: Cold Spring Harbor Perspectives in Biology; 2011. p. 245.

    Google Scholar 

  • Litwack G, editor. Plant hormones. Vitamins and hormones, vol. 72. Amsterdam: Academic Press/Elsevier; 2005. p. 535.

    Google Scholar 

  • Perrot-Rechenmann C, Hagen G, editors. Auxin molecular biology. Dordrecht: Kluwer; 2002. p. 184.

    Google Scholar 

Download references

Acknowledgments

The author is supported by the Institut des Sciences Biologiques from the Centre National de la Recherche Scientifique. As a work of tertiary literature, most references come from edited books or book chapters explaining why only very few original research articles are cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Perrot-Rechenmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Perrot-Rechenmann, C. (2014). Auxin Signaling in Plants. In: Howell, S. (eds) Molecular Biology. The Plant Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7570-5_15

Download citation

Publish with us

Policies and ethics