Skip to main content

Evolutionary Ecology of Chemically Mediated Plant-Insect Interactions

  • Reference work entry
  • First Online:

Part of the book series: The Plant Sciences ((PLANTSCI,volume 8))

Introduction

Plants and their associated insect herbivores account for more than half of all described species and interactions between these organisms are among the most dominant relationships in nature. Terrestrial plants serve as the primary food source for more than one million insect species scattered across diverse taxa, and these insect herbivores ingest >20 % of annual net primary productivity (Schoonhoven et al. 2005). Insects have developed diverse feeding strategies to obtain nutrients from their host plants, yet plants have not remained passive in the face of these attacks. Rather, plants have developed constitutive and dynamic forms of both physical and chemical resistance over evolutionary time to mitigate herbivory. These plant traits consequently influence the evolutionary trajectories of herbivores, thus resulting in the reciprocal evolution of herbivore countermeasures to thwart defenses. Ehrlich and Raven (1964) famously coined this phenomenon as “coevolution,” a...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25:420–32.

    Google Scholar 

  • Agrawal AA, Fishbein M. Plant defense syndromes. Ecology. 2006;87:S132–49.

    PubMed  Google Scholar 

  • Barbosa P, Hines J, Kaplan I, et al. Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst. 2009;40:1–20.

    Google Scholar 

  • Barton KE, Koricheva J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat. 2010;175:481–93.

    PubMed  Google Scholar 

  • Bernays E, Chapman R. The evolution of deterrent responses in plant-feeding insects. In: Chapman RF et al., editors. Perspectives in chemoreception and behavior. New York: Springer; 1987. p. 159–73.

    Google Scholar 

  • Bernays E, Graham M. On the evolution of host specificity in phytophagous arthropods. Ecology. 1988;69:886–92.

    Google Scholar 

  • Bryant JP, Chapin III FS, Klein DR. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 1983;40:357–68.

    CAS  Google Scholar 

  • Chen M-S. Inducible direct plant defense against insect herbivores: a review. Insect Sci. 2008;15:101–14.

    Google Scholar 

  • Coley PD, Bryant JP, Chapin III FS. Resource availability and plant antiherbivore defense. Science. 1985;230:895–9.

    PubMed  CAS  Google Scholar 

  • Després L, David J-P, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol. 2007;22:298–307.

    PubMed  Google Scholar 

  • Dethier VG. Evolution of feeding preferences in phytophagous insects. Evolution. 1954;8:33–54.

    Google Scholar 

  • Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends in Plant Science. 2010;15:167–75.

    PubMed  CAS  Google Scholar 

  • Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.

    Google Scholar 

  • Feeny P. Plant apparency and chemical defense. In: Wallace JW, Mansell RL, editors. Biochemical interactions between plants and insects. New York: Springer; 1976. p. 1–40.

    Google Scholar 

  • Fraenkel GS. The raison d’etre of secondary plant substances. Science. 1959;129:1466–70.

    PubMed  CAS  Google Scholar 

  • Futuyma DJ, Keese MC. Evolution and coevolution of plants and phytophagous arthropods. In: Rosenthal GA, Berenbaum MR, editors. Herbivores: their interactions with secondary plant metabolites vol II: ecological and evolutionary processes. San Diego: Academic Press; 1992. p. 439–475.

    Google Scholar 

  • Gershenzon J, Fontana A, Burow M, et al. Mixtures of plant secondary metabolites: metabolic origins and ecological benefits. In: Iason GR, Dicke M, Hartley SE, editors. The ecology of plant secondary metabolites: from genes to global processes. New York: Cambridge University Press; 2012. p. 56–77.

    Google Scholar 

  • Harborne JB. Introduction to ecological biochemistry. 4th ed. San Diego: Academic; 1997.

    Google Scholar 

  • Haukioja E. Induction of defenses in trees. Annu Rev Entomol. 1991;36:25–42.

    CAS  Google Scholar 

  • Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q Rev Biol. 1992;67:283–335.

    Google Scholar 

  • Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66.

    PubMed  CAS  Google Scholar 

  • Janzen DH. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica. 1974;6:69–103.

    Google Scholar 

  • Jones CG, Firn RD. On the evolution of plant secondary chemical diversity. Philos Trans Biol Sci. 1991;333:273–80.

    Google Scholar 

  • Karban R, Baldwin IT. Induced responses to herbivory. Chicago: Chicago University Press; 1997.

    Google Scholar 

  • Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol. 2002;53:299–328.

    PubMed  CAS  Google Scholar 

  • Koricheva J, Barton KE. Temporal changes in plant secondary metabolite production: patterns, causes, and consequences. In: Iason GR, Dicke M, Hartley SE, editors. The ecology of plant secondary metabolites: from genes to global processes. New York: Cambridge University Press; 2012. p. 34–55.

    Google Scholar 

  • Loomis WE. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc Am Soc Hortic Sci. 1932;29:240–5.

    CAS  Google Scholar 

  • McKey D. Adaptive patterns in alkaloid physiology. Am Nat. 1974;108:305–20.

    Google Scholar 

  • Moore B, DeGabriel JL. Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales. In: Iason GR, Dicke M, Hartley SE, editors. The ecology of plant secondary metabolites: from genes to global processes. New York: Cambridge University Press; 2012. p. 226–46.

    Google Scholar 

  • Nishida R. Sequestration of defensive substances from plants by lepidoptera. Annu Rev Entomol. 2002;47:57–92.

    PubMed  CAS  Google Scholar 

  • Opitz SEW, Müller C. Plant chemistry and insect sequestration. Chemoecology. 2009;19:117–54.

    CAS  Google Scholar 

  • Rhoades DF. Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH, editors. Herbivores: their interaction with secondary plant metabolites. New York: Academic; 1979. p. 3–54.

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M. Insect-plant biology. Oxford: Oxford University Press; 2005.

    Google Scholar 

  • Stamp N. Out of the quagmire of plant defense hypotheses. Q Rev Biol. 2003;78:23–55.

    PubMed  Google Scholar 

  • Wu J, Baldwin IT. New insights into plant responses to the attack from insect herbivores. Annu Rev Genet. 2010;44:1–24.

    PubMed  CAS  Google Scholar 

Further Reading

  • Agrawal AA. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evolut Ecol Res. 2005;7:651–67.

    Google Scholar 

  • Agrawal AA, Lau JA, Hambäck PA. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol. 2006;81:349–76.

    PubMed  Google Scholar 

  • Agrawal AA, Conner JK, Rasmann S. Tradeoffs and negative correlations in evolutionary ecology. In: Bell M, Eanes W, Futuyma D, Levinton J, editors. Evolution after Darwin: the first 150 years. Sunderland: Sinauer Associates; 2010. p. 243–68.

    Google Scholar 

  • Arnason JT, Bernards M. Impact of constitutive plant natural products on herbivores and pathogens. Can J Zool. 2010;88:615–27.

    CAS  Google Scholar 

  • Ayres MP, Clausen TP, MacLean SEJ, et al. Diversity of structure and antiherbivore activity in condensed tannins. Ecology. 1997;78:1696–712.

    Google Scholar 

  • Bailey JK, Schweitzer JA, Rehill BJ, et al. Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection. Biol Invasions. 2007;9:715–22.

    Google Scholar 

  • Berenbaum M. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science. 1978;201:532–4.

    PubMed  CAS  Google Scholar 

  • Berenbaum M. Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: plant chemistry and community structure. Ecology. 1981;62:1254–66.

    CAS  Google Scholar 

  • Berenbaum M. Coumarins and caterpillars: a case for coevolution. Evolution. 1983;37:163–79.

    CAS  Google Scholar 

  • Berenbaum MC. The expected effect of a combination of agents: the general solution. J Theor Biol. 1985;114:413–31.

    PubMed  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR. Furanocoumarin metabolism in Papilio polyxenes: biochemistry, genetic variability, and ecological significance. Oecologia. 1993;95:370–5.

    Google Scholar 

  • Berenbaum MR, Nitao JK, Zangerl AR. Adaptive significance of furanocoumarin diversity in Pastinaca sativa (Apiaceae). J Chem Ecol. 1991;17:207–15.

    PubMed  CAS  Google Scholar 

  • Berenbaum MR, Favret C, Schuler MA. On defining“key innovations” in an adaptive radiation: cytochrome P450s and papilionidae. Am Nat. 1996;148:S139–55.

    Google Scholar 

  • Bergvall UA, Rautio P, Kesti K, et al. Associational effects of plant defences in relation to within-and between-patch food choice by a mammalian herbivore: neighbour contrast susceptibility and defence. Oecologia. 2006;147:253–60.

    Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, shape Rhopalosiphum maidis. Entomol Exp Appl. 1998;87:133–42.

    CAS  Google Scholar 

  • Bowers MD. The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MG, editors. Insect chemical ecology: an evolutionary approach. New York: Chapman and Hall; 1992. p. 216–44.

    Google Scholar 

  • Castañeda LE, Figueroa CC, Fuentes-Contreras E, et al. Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: a correlational study in the grain aphid, Sitobion avenae. J Exp Biol. 2009;212:1185–90.

    PubMed  Google Scholar 

  • Close DC, McArthur C. Rethinking the role of many plant phenolics–protection from photodamage not herbivores? Oikos. 2002;99:166–72.

    CAS  Google Scholar 

  • Coley PD. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr. 1983;53:209–34.

    Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, et al. Herbivore-infested plants selectively attract parasitoids. Lett Nat. 1998;393:570–3.

    Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 2001;410:577–80.

    PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70:1621–37.

    PubMed  CAS  Google Scholar 

  • Dicke M. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 2009;32:654–65.

    PubMed  CAS  Google Scholar 

  • Dyer LA, Dodson CD, Stireman JO, et al. Synergistic effects of three Piper amides on generalist and specialist herbivores. J Chem Ecol. 2003;29:2499–514.

    PubMed  CAS  Google Scholar 

  • Fatouros NE, van Loon JJA, Hordijk KA, et al. Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J Chem Ecol. 2005;31:2033–47.

    PubMed  CAS  Google Scholar 

  • Fine PVA, Mesones I, Coley PD. Herbivores promote habitat specialization by trees in Amazonian forests. Science. 2004;305:663–5.

    PubMed  CAS  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, et al. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology. 2006;87:S150–62.

    PubMed  Google Scholar 

  • Futuyma DJ, Agrawal AA. Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci. 2009;106:18054–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Futuyma DJ, Mitter C. Insect-plant interactions: the evolution of component communities. Philos Trans R Soc Lond B Biol Sci. 1996;351:1361–6.

    Google Scholar 

  • Gerber E, Hinz HL, Blossey B. Interaction of specialist root and shoot herbivores of Alliaria petiolata and their impact on plant performance and reproduction. Ecol Entomol. 2007;32:357–65.

    Google Scholar 

  • Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14.

    PubMed  CAS  Google Scholar 

  • Gouinguené SP, Turlings TCJ. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002;129:1296–307.

    PubMed  PubMed Central  Google Scholar 

  • Hakes AS, Cronin JT. Environmental heterogeneity and spatiotemporal variability in plant defense traits. Oikos. 2011;120:452–62.

    Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, et al. Shared signals -‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett. 2008;11:24–34.

    PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol. 2009;54:57–83.

    PubMed  CAS  Google Scholar 

  • Huang T, Jander G, de Vos M. Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry. 2011;72:1531–7.

    PubMed  CAS  Google Scholar 

  • Ibrahim MA, Nissinen A, Holopainen JK. Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol. 2005;31:1969–84.

    PubMed  CAS  Google Scholar 

  • Irwin RE, Adler LS. Correlations among traits associated with herbivore resistance and pollination: implications for pollination and nectar robbing in a distylous plant. Am J Bot. 2006;93:64–72.

    Google Scholar 

  • Janz N, Nylin S. The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ, editor. Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. Berkeley: University of California Press; 2008. p. 203–15.

    Google Scholar 

  • Johnson MTJ, Agrawal AA, Maron JL, Salminen J. Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. J Evol Biol. 2009;22:1295–307.

    PubMed  CAS  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, et al. Physiological integration of roots and shoots in plant defense strategies links above-and belowground herbivory. Ecol Lett. 2008;11:841–51.

    PubMed  Google Scholar 

  • Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–4.

    PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ. Cross talk in defense signaling. Plant Physiol. 2008;146:839–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koricheva J. Interpreting phenotypic variation in plant allelochemistry: problems with the use of concentrations. Oecologia. 1999;119:467–73.

    Google Scholar 

  • Kostenko O, Bezemer TM. Intraspecific variation in plant size, secondary plant compounds, herbivory and parasitoid assemblages during secondary succession. Basic Appl Ecol. 2013;14:337–46.

    CAS  Google Scholar 

  • Kursar TA, Coley PD. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol. 2003;31:929–49.

    CAS  Google Scholar 

  • Kursar TA, Dexter KG, Lokvam J, et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci. 2009;106:18073–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lerdau M, Gray D. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 2003;157:199–211.

    CAS  Google Scholar 

  • Lindroth R. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol. 2010;36:2–21.

    PubMed  CAS  Google Scholar 

  • Milchunas DG, Noy-Meir I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos. 2002;99:113–30.

    Google Scholar 

  • Pass GJ, Foley WJ. Plant secondary metabolites as mammalian feeding deterrents: separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum (Trichosurus vulpecula). J Comp Physiol B. 2000;170:185–92.

    PubMed  CAS  Google Scholar 

  • Peñuelas J, Llusià J. Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol. 2004;19:402–4.

    PubMed  Google Scholar 

  • Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011;62:549–66.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Dicke M. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 2007;12:564–9.

    PubMed  CAS  Google Scholar 

  • Rausher MD. Co-evolution and plant resistance to natural enemies. Nature. 2001;411:857–64.

    PubMed  CAS  Google Scholar 

  • Schuler MA. P450s in plant–insect interactions. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2011;1814:36–45.

    CAS  Google Scholar 

  • Smilanich AM, Vargas J, Dyer LA, Bowers MD. Effects of ingested secondary metabolites on the immune response of a polyphagous caterpillar Grammia incorrupta. J Chem Ecol. 2011;37(3):239–45.

    PubMed  CAS  Google Scholar 

  • Stinchcombe JR, Rausher MD. Diffuse selection on resistance to deer herbivory in the ivyleaf morning glory, Ipomoea hederacea. Am Nat. 2001;158:376–88.

    PubMed  CAS  Google Scholar 

  • Theis N, Lerdau M. The evolution of function in plant secondary metabolites. Int J Plant Sci. 2003;164:S93–102.

    CAS  Google Scholar 

  • Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol. 2006;9:297–304.

    PubMed  CAS  Google Scholar 

  • Thompson JN. Specific hypotheses on the geographic mosaic of coevolution. Am Nat. 1999;153:S1–14.

    Google Scholar 

  • Tuomi J, Niemelä P, Chapin III FS, et al. Defensive responses of trees in relation to their carbon/nutrient balance. In: Mattson WJ, Levieux J, Bernard-Dagan C, editors. Mechanisms of woody plant defenses against insects. New York: Springer; 1988. p. 57–72.

    Google Scholar 

  • Van Dam NM, Tytgat TOG, Kirkegaard JA. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev. 2009;8:171–86.

    CAS  Google Scholar 

  • Venditti C, Meade A, Pagel M. Multiple routes to mammalian diversity. Nature. 2011;479:393–6.

    PubMed  CAS  Google Scholar 

  • Wiggins NL, McArthur C, Davies NW, McLean S. Spatial scale of the patchiness of plant poisons: a critical influence on foraging efficiency. Ecology. 2006;87:2236–43.

    PubMed  Google Scholar 

  • Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64:3–19.

    PubMed  CAS  Google Scholar 

  • Yuan JS, Himanen SJ, Holopainen JK, et al. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol. 2009;24:323–31.

    PubMed  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, et al. Cyanogenic glucosides and plant–insect interactions. Phytochemistry. 2004;65:293–306.

    PubMed  CAS  Google Scholar 

  • Zangerl AR, Rutledge CE. The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat. 1996;147:599–608.

    Google Scholar 

  • Zarate SI, Kempema LA, Walling LL. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 2007;143:866–75.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Trowbridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Trowbridge, A.M. (2014). Evolutionary Ecology of Chemically Mediated Plant-Insect Interactions. In: Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7501-9_11

Download citation

Publish with us

Policies and ethics