Skip to main content

Plant-Microbe Interactions

  • Reference work entry
  • First Online:
Book cover Ecology and the Environment

Part of the book series: The Plant Sciences ((PLANTSCI,volume 8))

Abstract

  • Globally, the majority of nitrogen and phosphorus uptake by plants is mediated by mutualistic root microbes, which form intricate and complex biochemical and genetic interactions with plants.

  • Plant leaves host a variety of beneficial bacteria and fungi that contribute to plant nutrition and/or defense against pathogens.

  • In addition to mutualistic bacteria intimately associated with roots, there exist plant growth-promoting rhizobacteria more loosely associated with roots that contribute to plant nutrition, protection from pathogens, and environmental stress reduction.

  • The region surrounding roots, the rhizosphere, is a dynamic environment, rich in chemical communication among plants and microbes, where nutrient cycling is altered by root exudation and heightened microbial activity.

  • Plants profoundly impact the biogeochemical cycling activities of soil microbes through their effects on microclimate and soil chemistry.

  • Plants and microbes collaborate to produce soil organic matter such as humic substances, which determine important soil properties such as water and nutrient holding capacity and the stability of soil carbon.

  • The species composition of plant-associated microbial communities is extremely diverse and variable, but is strongly influenced by plant species.

  • Soil microbial communities can mediate changes in plant diversity during invasions or succession through positive and negative soil feedbacks.

  • Plant-microbe interactions are involved in several feedback mechanisms in which the biosphere reacts to and influences climate change.

  • There are currently gaps in the understanding of plant-microbe interactions, particularly in terms of genetics of certain plant-microbe mutualisms, the diversity of plant-associated microbial communities, and the role of plant-microbe interactions in producing feedbacks to climate change; however, new technologies are emerging that should help fill existing gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badri DV, Weir TL, Dvd L, Vivanco JM. Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol. 2009;20:642–50.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner K, Coetzee MPA, Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol. 2011;12:515–34.

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    Article  PubMed  CAS  Google Scholar 

  • Berry AM, Mendoza-Herrera A, Guo Y-Y, Hayashi J, Persson T, Barabote R, et al. New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct Plant Biol. 2011;38:645–52.

    Article  CAS  Google Scholar 

  • Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bonfante P, Genre A. Mechanisms underlying beneficial plant – fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48.

    Article  PubMed  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, et al. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils. 2012;48:123–49.

    Article  CAS  Google Scholar 

  • Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.

    Article  PubMed  CAS  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, editor. Fungal associations. 2nd ed. Berlin/Heidelberg: Springer; 2012. p. 207–30.

    Chapter  Google Scholar 

  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Chang Biol. 2012;18:2681–93.

    Article  PubMed  Google Scholar 

  • Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.

    Article  CAS  Google Scholar 

  • Eviner VT, Chapin FS. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst. 2003;34:455–85.

    Article  Google Scholar 

  • Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, et al. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J. 2011;68:954–65.

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist. 2013;198:656–69.

    Article  PubMed  CAS  Google Scholar 

  • Lipson DA, Raab TK, Schmidt SK, Monson RK. Variation in competitive abilities of plants and microbes for specific amino acids. Biol Fertil Soils. 1999;29:257–61.

    Article  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 2009;17:458–66.

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23:119–28.

    Article  PubMed  Google Scholar 

  • Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190:783–93.

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119–44.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Newton WE, editors. Nitrogen-fixing actinorhizal symbioses. Dordrecht: Springer; 2008.

    Google Scholar 

  • Ponge J-F. Plant-soil feedbacks mediated by humus forms: a review. Soil Biol Biochem. 2013;57:1048–60.

    Article  CAS  Google Scholar 

  • Raab TK, Lipson DA. The rhizosphere: a synchrotron-based view of nutrient flow in the root zone. In: Grafe M, Singh B, editors. Advances in understanding soil environments by application of synchrotron-based techniques. 1st ed. The Netherlands: Elsevier; 2010.

    Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–6.

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M. Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol. 2013;39:962–8.

    Article  PubMed  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Ann Bot. 2013;111:743–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol. 2010;33:269–74.

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York: Academic; 2008.

    Google Scholar 

  • van der Putten WH, Klironomos JN, Wardle DA. Microbial ecology of biological invasions. ISME J. 2007;1:28–37.

    Article  PubMed  Google Scholar 

  • Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Crespi M, editor. Root genomics and soil interactions. Ames: Wiley-Blackwell; 2013.

    Google Scholar 

  • Maheshwari DK, editor. Bacteria in agrobiology: stress management. Heidelberg: Springer; 2012.

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P, editors. The rhizosphere: biochemistry and organic substances at the soil-plant interface. 2nd ed. Boca Raton: CRC Press; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lipson, D.A., Kelley, S.T. (2014). Plant-Microbe Interactions. In: Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7501-9_10

Download citation

Publish with us

Policies and ethics