Skip to main content

Key Signaling Pathways in Normal and Neoplastic Melanocytes

  • Living reference work entry
  • First Online:
Melanoma

Abstract

Signal transduction pathways regulate the proliferation, differentiation, migration, and survival of melanocytes. These signaling pathways are dysregulated during the transformation of melanocytes, often due to somatic mutation of genes within the pathway. One major signaling pathway that highlights this paradigm is the mitogen-activated protein (MAP) kinase pathway. Growth factor signaling via the MAP kinase pathway is required for melanocyte proliferation and survival. MAP kinase signaling is activated in the majority of melanomas through somatic mutations in NRAS, BRAF, and MEK1/2. Regulation of proliferation and survival is also controlled by phosphatidyl-inositol 3′-kinase (PI3K) signaling. PI3K is a major regulator of melanocyte biology and is commonly activated through the mutation/loss of expression of negative not pathway regulators such as PTEN. Alterations in cyclin-dependent kinase signaling are also frequent in melanoma and promote aberrant cell cycle progression. Other pathways such as Gαq, Wnt (canonical and noncanonical), Hippo, Notch, and signaling downstream of Rho family GTPases also play important roles in the aforementioned biological processes, and in some cases are altered in selective subsets of melanoma. The high mutation burden within genes in signaling pathways, the important role of these pathways in melanocytic neoplasms, and the knowledge that melanomas adapt their signaling mechanisms in response to targeted inhibitors make it essential to have a thorough understanding of the key signaling pathways in melanocytes and melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann J et al (2005) Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65(10):4005–4011

    Article  CAS  PubMed  Google Scholar 

  • Anastas JN et al (2014) WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest 124(7):2877–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arozarena I et al (2011a) Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Arozarena I et al (2011b) In melanoma, beta-catenin is a suppressor of invasion. Oncogene 30(45):4531–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann IM et al (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11(24 Pt 1):8606–8614

    Article  CAS  PubMed  Google Scholar 

  • Baenke F et al (2016) Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol Oncol 10(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Balmanno K, Cook SJ (2009) Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16(3):368–377

    Article  CAS  PubMed  Google Scholar 

  • Bedogni B (2014) Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res 27(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Bedogni B et al (2008) Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118(11):3660–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger MF et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485(7399):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt KV et al (2005) Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 12(24):3459–3471

    Article  CAS  Google Scholar 

  • Bhatt KV et al (2007) Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27(Kip1) in human melanoma cells. Oncogene 26(7):1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Biechele TL et al (2012) Wnt/beta-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Sci Signal 5(206):ra3

    PubMed  PubMed Central  Google Scholar 

  • Bigas A, Guiu J, Gama-Norton L (2013) Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 51(4):264–270

    Article  CAS  PubMed  Google Scholar 

  • Boisvert-Adamo K, Aplin AE (2008) Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27(23):3301–3312

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T et al (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochim Biophys Acta 1863(2):303–313

    Article  CAS  PubMed  Google Scholar 

  • Botton T et al (2013) Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell Melanoma Res 26(6):845–851

    Article  CAS  PubMed  Google Scholar 

  • Brady SC et al (2009) Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation. Cancer Res 69(17):6773–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer T et al (2003) Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 22(55):8823–8834

    Article  CAS  PubMed  Google Scholar 

  • Busca R et al (2000) Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 19(12):2900–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartlidge RA et al (2008) Oncogenic BRAF(V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res 21(5):534–544

    Article  CAS  PubMed  Google Scholar 

  • Carvajal RD et al (2014) Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA 311(23):2397–2405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X et al (2014) Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33(39):4724–4734

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2017) RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell 31(5):685–696 e6

    Article  CAS  PubMed  Google Scholar 

  • Chien AJ et al (2009) Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A 106(4):1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien AJ et al (2014) Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/beta-catenin signaling. PLoS One 9(4):e94748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chin L et al (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11(21):2822–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde-Perez A et al (2015) A caveolin-dependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity. Nat Commun 6:8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147

    Article  CAS  PubMed  Google Scholar 

  • Damsky WE et al (2011) β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20(6):741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dankort D et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  • Davies MA et al (2008) A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99(8):1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas V et al (2007) Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21(22):2923–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deuker MM et al (2015) PI3′-kinase inhibition forestalls the onset of MEK1/2 inhibitor resistance in BRAF-mutated melanoma. Cancer Discov 5(2):143–153

    Article  CAS  PubMed  Google Scholar 

  • Dissanayake SK et al (2008) Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res 68(24):10205–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumaz N et al (2006) In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66(19):9483–9491

    Article  CAS  PubMed  Google Scholar 

  • Eskandarpour M et al (2005) Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson B et al (2015) Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression. Oncogene 34(22):2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Gewinner C et al (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16(2):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray-Schopfer VC et al (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95(4):496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha L et al (2007) ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci U S A 104(26):10968–10973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour JW et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330(6009):1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoek KS et al (2006) Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19(4):290–302

    Article  CAS  PubMed  Google Scholar 

  • Horrigan SK et al (2017) Replication study: melanoma genome sequencing reveals frequent PREX2 mutations. Elife 6:e21634

    PubMed  PubMed Central  Google Scholar 

  • Huang JL, Urtatiz O, Van Raamsdonk CD (2015) Oncogenic G protein GNAQ induces uveal melanoma and intravasation in mice. Cancer Res 75(16):3384–3397

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson KE et al (2013) BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res 19(24):6696–6702

    Article  CAS  PubMed  Google Scholar 

  • Inoue-Narita T et al (2008) Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis. Cancer Res 68(14):5760–5768

    Article  CAS  PubMed  Google Scholar 

  • Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023

    Article  CAS  PubMed  Google Scholar 

  • Joseph EW et al (2010) The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A 107(33):14903–14908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan K et al (2003) Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci U S A 100(3):1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RM et al (2008) B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol Biol Cell 19(2):498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelsche C et al (2015) Melanotic tumors of the nervous system are characterized by distinct mutational, chromosomal and epigenomic profiles. Brain Pathol 25(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Krauthammer M et al (2015) Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 47(9):996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong LN et al (2012) Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18:1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamar JM et al (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 109(37):E2441–E2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larribere L et al (2004) PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ 11(10):1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Larue L et al (2009) Bypassing melanocyte senescence by beta-catenin: a novel way to promote melanoma. Pathol Biol (Paris) 57:543

    Article  CAS  Google Scholar 

  • Lee EK et al (2013) The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma. Mol Cell Biol 33(22):4422–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Chew C et al (2015) In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K-AKT signaling at endosomes. Cancer Discov 5(7):740–751

    Article  CAS  PubMed  Google Scholar 

  • Li A et al (2012) Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 132(11):2610–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay CR et al (2011) P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2:555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsay CR et al (2015) A Rac1-independent role for P-Rex1 in melanoblasts. J Invest Dermatol 135(1):314–318

    Article  CAS  PubMed  Google Scholar 

  • Lito P et al (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22(5):668–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2015) Mutant GNAQ promotes cell viability and migration of uveal melanoma cells through the activation of Notch signaling. Oncol Rep 34(1):295–301

    Article  CAS  PubMed  Google Scholar 

  • Madhunapantula SV, Sharma A, Robertson GP (2007) PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res 67(8):3626–3636

    Article  CAS  PubMed  Google Scholar 

  • Marsh Durban V et al (2013) Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. J Clin Invest 123(12):5104–5118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKay MM, Freeman AK, Morrison DK (2011) Complexity in KSR function revealed by Raf inhibitor and KSR structure studies. Small GTPases 2(5):276–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Mense SM et al (2015) PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci Signal 8(370):ra32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michaloglou C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  • Monahan KB et al (2010) Somatic p16(INK4a) loss accelerates melanomagenesis. Oncogene 29(43):5809–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallet-Staub F et al (2014) Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol 134(1):123–132

    Article  CAS  PubMed  Google Scholar 

  • Nemeth MJ et al (2007) Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A 104(39):15436–15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev SI et al (2012) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139

    Article  CAS  Google Scholar 

  • O’Connell MP, Weeraratna AT (2009) Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell Melanoma Res 22:724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Connell MP et al (2013) Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 3(12):1378–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paraiso KHT et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71(7):2750–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock PM et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33(1):19–20

    Article  CAS  PubMed  Google Scholar 

  • Pratilas CA et al (2009) V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106(11):4519–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183(3):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Rushworth LK et al (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26(6):2262–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez IM, Aplin AE (2014) Hippo: hungry, hungry for melanoma invasion. J Invest Dermatol 134(1):14–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter ER et al (2002) Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62(11):3200–3206

    CAS  PubMed  Google Scholar 

  • Scortegagna M et al (2014) Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of Braf::Pten melanoma. Oncogene 33:4330–4339

    Article  CAS  PubMed  Google Scholar 

  • Scortegagna M et al (2015) PDK1 and SGK3 contribute to the growth of BRAF-mutant melanomas and are potential therapeutic targets. Cancer Res 75(7):1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott G, Cassidy L, Busacco A (1997) Fibronectin suppresses apoptosis in normal human melanocytes through an integrin-dependent mechanism. J Invest Dermatol 108(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Shain AH et al (2015) Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 47(10):1194–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Aplin AE (2012) ERK2 phosphorylation of serine 77 regulates Bmf pro-apoptotic activity. Cell Death Dis 3:e253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H et al (2011) Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1. Oncogene 30(42):4316–4326

    Article  CAS  PubMed  Google Scholar 

  • Shin MK et al (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402(6761):496–501

    Article  CAS  PubMed  Google Scholar 

  • Solit DB et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362

    Article  CAS  PubMed  Google Scholar 

  • Sotillo R et al (2001) Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci U S A 98(23):13312–13317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  • Stahl JM et al (2004) Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64(19):7002–7010

    Article  CAS  PubMed  Google Scholar 

  • TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696

    Article  CAS  Google Scholar 

  • Van Brocklin MW et al (2009) Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res 69(5):1985–1994

    Article  CAS  Google Scholar 

  • Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602

    Article  PubMed  CAS  Google Scholar 

  • Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363(23):2191–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan PT et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  CAS  PubMed  Google Scholar 

  • Watson IR et al (2014) The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. Cancer Res 74(17):4845–4852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber CK et al (2001) Active ras induces heterodimerization of cRaf and BRaf. Cancer Res 61(9):3595–3598

    CAS  PubMed  Google Scholar 

  • Webster MR, Kugel CH 3rd, Weeraratna AT (2015a) The Wnts of change: how Wnts regulate phenotype switching in melanoma. Biochim Biophys Acta 1856(2):244–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster MR et al (2015b) Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell Melanoma Res 28(2):184–195

    Article  CAS  PubMed  Google Scholar 

  • Weeraratna AT et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Weiss MB et al (2012) TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 72(24):6382–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch HC (2015) Regulation and function of P-Rex family Rac-GEFs. Small GTPases 6(2):49–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfel T et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269(5228):1281–1284

    Article  CAS  PubMed  Google Scholar 

  • Xing F et al (2012) Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31(4):446–457

    Article  CAS  PubMed  Google Scholar 

  • Yeh I et al (2017) Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nat Com 8(1):644. https://doi.org/10.1038/s41467-017-00758-3

    Article  Google Scholar 

  • Zhang G et al (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126(5):1834–1856

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng B et al (2009) Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 33(2):237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Aplin Laboratory is supported by the NIH under award numbers: CA196278, CA160495 and CA182635, and by the Melanoma Research Alliance. The Weeraratna Laboratory is supported by NIH grants: CA174746, CA114046, CA207935, CA174523 and grants from the Melanoma Research Foundation and the Melanoma Research Alliance/L’Oreal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Aplin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aplin, A.E., Weeraratna, A.T. (2018). Key Signaling Pathways in Normal and Neoplastic Melanocytes. In: Fisher, D., Bastian, B. (eds) Melanoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7322-0_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7322-0_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7322-0

  • Online ISBN: 978-1-4614-7322-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics