Skip to main content

Globus Pallidus Cellular Models

Encyclopedia of Computational Neuroscience

Definition

The globus pallidus is a part of the basal ganglia in the vertebrate brain. Cellular models of the globus pallidus are computer representations of the specific dynamics of globus pallidus neurons.

Detailed Description

Goals of Globus Pallidus Cellular Models

Detailed cellular models of globus pallidus (GP) neurons are typically constructed to better understand how they integrate synaptic input and how their intrinsic properties contribute to the input–output function of the GP. The exploration of GP function in larger network models is typically carried out using less detailed cell models. The level of complexity and biological realism best used for a GP neuron model depends on the questions one wants to address (Herz et al. 2006) and ranges from simple integrate and fire models to complex full-morphological reconstructions with a full complement of ion channel types found in these neurons.

Models That Capture the Detailed Dynamic Properties of Globus Pallidus Neurons

The GP...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19:442–477

    Article  PubMed  Google Scholar 

  • Cleary DR, Raslan AM, Rubin JE, Bahgat D, Viswanathan A, Heinricher MM, Burchiel KJ (2013) Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J Neurophysiol 109:978–987

    Article  PubMed Central  PubMed  Google Scholar 

  • Deister CA, Chan CS, Surmeier DJ, Wilson CJ (2009) Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. J Neurosci 29:8452–8461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dostrovsky JO, Hutchison WD, Lozano AM (2002) The globus pallidus, deep brain stimulation, and Parkinson’s disease. Neuroscientist 8:284–290

    PubMed  Google Scholar 

  • Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146–15159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476–7491

    Article  CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001a) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84:411–423

    Article  CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001b) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84:401–410

    Article  CAS  PubMed  Google Scholar 

  • Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314:80–85

    Article  CAS  PubMed  Google Scholar 

  • Holgado AJN, Terry JR, Bogacz R (2010) Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 30:12340–12352

    Article  CAS  PubMed  Google Scholar 

  • Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, McIntyre CC (2008) Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol 100:2549–2563

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang G, Lowery MM (2013) Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Trans Neural Syst Rehabil Eng 21:244–253

    Article  PubMed  Google Scholar 

  • Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson’s disease: a composite network/field model. Front Comput Neurosci 7(39)

    Article  PubMed Central  PubMed  Google Scholar 

  • Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313–330

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N (2011) Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci USA 108:11620–11625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552–13566

    Article  CAS  PubMed  Google Scholar 

  • Park C, Rubchinsky LL (2012) Potential Mechanisms for Imperfect Synchronization in Parkinsonian basal ganglia. Plos One 7

    Google Scholar 

  • Plenz D, Kitai ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682

    Article  CAS  PubMed  Google Scholar 

  • Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211–235

    Article  PubMed  Google Scholar 

  • Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. J Neurosci 30:2767–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • So R, Kent A, Grill W (2012) Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci 32(3):499–519

    Article  PubMed Central  PubMed  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976

    CAS  PubMed  Google Scholar 

  • Vitek JL, Zhang J, Hashimoto T, Russo GS, Baker KB (2012) External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network. Exp Neurol 233:581–586

    Article  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Kita H (2010) Organization of the globus pallidus. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier, New York, pp 233–247

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Jaeger, D. (2014). Globus Pallidus Cellular Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Basal Ganglia: Globus Pallidus Cellular Models
    Published:
    13 October 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_87-2

  2. Original

    Globus Pallidus Cellular Models
    Published:
    12 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_87-1