Skip to main content

Basal Ganglia: Dopaminergic Cell Models

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249–2261

    Article  CAS  PubMed  Google Scholar 

  • Blythe SN, Wokosin D, Atherton JF, Bevan MD (2009) Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J Neurosci 49:15531–15541

    Article  CAS  Google Scholar 

  • Braver TS, Barch DM (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev V26(7):809–817. https://doi.org/10.1016/S0149-7634(02)00067-2

    Article  Google Scholar 

  • Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Rev 47(1–3):126–144

    Article  CAS  PubMed  Google Scholar 

  • Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69

    Article  CAS  PubMed  Google Scholar 

  • Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549–2563

    Article  CAS  PubMed  Google Scholar 

  • Canavier CC, Oprisan S, Callaway J, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98(5):3006–3022

    Article  PubMed  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Chergui K, Charlety PJ, Akaoka H, Saunier CF, Brunet JL, Buda M, Svensson TH, Chovet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137–144

    Article  CAS  PubMed  Google Scholar 

  • Deister CA, Teagarden MA, Wilson CJ, Paladini CA (2009) An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci 50:15888–15897

    Article  CAS  Google Scholar 

  • Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7(5):e1002050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RC, Khaliq ZM (2015) T-type calcium channels trigger a hyperpolarization induced afterdepolarization in substantia nigra dopamine neurons. BMC Neurosci 16:1–2

    Article  CAS  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983–1994

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29:11011–11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha J, Kuznetsov A (2011) Frequency switching in a two-compartmental model of the dopaminergic neuron. J Comp Neurosci 30(2):241–254

    Article  Google Scholar 

  • Ha J, Kuznetsov A (2013) Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron. PLoS One 8(7):e69984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362

    Article  CAS  PubMed  Google Scholar 

  • Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. J Neurosci 114(2):475–492

    Article  CAS  Google Scholar 

  • Ji H, Shepard PD (2006) SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 140(2):623–633

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD (2012) Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons – implications for a role in depolarization block. Eur J Neurosci 36(7):2906–2916. https://doi.org/10.1111/j.1460-9568.2012.08190.x

  • Johnson SW, Wu Y-N (2004) Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 1019:293–296

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:655–657

    Article  Google Scholar 

  • Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30(21):7401–7413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komendantov AO, Canavier CC (2002) Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony. J Neurophysiol 87:1526–1541

    Article  CAS  PubMed  Google Scholar 

  • Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346–357

    Article  CAS  PubMed  Google Scholar 

  • Kotter R, Feizelmeier M (1998) Species-dependence and relationship of morphological and electrophysiological properties in nigral compacta neurons. Prog Neurobiol 54:619–632

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov AS, Kopell NJ, Wilson CJ (2006) Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 95:932–947

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova AY, Huertas M, Kuznetsov AS, Papadini C, Canavier C (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comp Neuroscience 28(3):389–403

    Article  Google Scholar 

  • Li Y-X, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397–410

    Article  CAS  PubMed  Google Scholar 

  • Lobb CJ, Wilson CJ, Paladini CA (2010) A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 104:403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in chains of electrically coupled FitzHugh–Nagumo oscillations. SIAM J Appl Math 61:1763–1801

    Article  Google Scholar 

  • Medvedev GS, Wilson CJ, Callaway JC, Kopell N (2003) Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron. J Comput Neurosci 15:53–69

    Article  CAS  PubMed  Google Scholar 

  • Meltzer LT, Christoffersen CL, Serpa KA (1997) Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 21(4):511–518

    Article  CAS  PubMed  Google Scholar 

  • Meza R, López-Jury L, Canavier C, Henny P (2018) Role of the axon initial segment in the control of spontaneous frequency of nigral dopaminergic neurons in vivo. J Neurosci 38(3):733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa H, Khodakhah K, Williams JT (2003) Two intracellular pathways medicate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 23:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozova EO, Zakharov D, Gutkin BS, Lapish CC, Kuznetsov A (2016a) Dopamine neurons change the type of excitability in response to stimuli. PLoS Comput Biol 12:e1005233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morozova EO, Myroshnychenko M, Zakharov D, Di Volo M, Gutkin BS, Lapish CC, Kuznetsov A (2016b) Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 116:1900–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard S, Greenfield SA (1992) Sub-populations of pars compacta neurons in the substantia nigra: the significance of qualitatively and quantitatively-distinct conductances. Neuroscience 48:423–437

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22(4):1290–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oster A, Gutkin BS (2011) A reduced model of DA neuronal dynamics that displays quiescence, tonic firing and bursfing. J Physiol Paris 105(1–3):53–58

    Article  CAS  PubMed  Google Scholar 

  • Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334

    Article  CAS  PubMed  Google Scholar 

  • Ping HX, Shepard PD (1996) Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809–814

    Article  CAS  PubMed  Google Scholar 

  • Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 49:15414–15419

    Article  CAS  Google Scholar 

  • Qian K, Yu N, Tucker KR, Levitan ES, Canavier CC (2014) Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. J Neurophysiol 112:2779–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7(12):967–975

    Article  CAS  PubMed  Google Scholar 

  • Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. J Neurosci 80(2):545–557

    Article  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  • Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141–150

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong ZY, Overton PG, Clark D (1996) Antagonism of NMDA receptors but not AMPA/kainate receptors blocks bursting in dopaminergic neurons induced by stimulation of the prefrontal cortex. J Neural Transm 103:889–904

    Article  CAS  PubMed  Google Scholar 

  • Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22(12):3111–3121

    Article  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) A coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21(10):3443–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung WH, Hausser MA, Jack JJ (1991) Electrophysiology of dopaminergic and non-dopaminergic neurons of the guinea-pig substantia nigra pars compacta in vitro. J Physiol (Lond) 436:643–667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kuznetsov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kuznetsov, A., Gutkin, B. (2020). Basal Ganglia: Dopaminergic Cell Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_86-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_86-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Basal Ganglia: Dopaminergic Cell Models
    Published:
    14 February 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_86-3

  2. Original

    Dopaminergic Cell Models
    Published:
    20 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_86-2