Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Dopaminergic Cell Models

  • Alexey KuznetsovEmail author
  • Boris Gutkin
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_86-2


  • Dopaminergic (DA) neurons are defined as neurons synthesizing and containing the neurotransmitter and neurohormone dopamine. Such neurons release dopamine synaptically as well as dendritically (Bustos et al. 2004).

  • The electrophysiological signatures of this neuron are broad action potentials (Fig. 1) and a low-frequency, regular spontaneous activity (Fig. 2a).

  • A distinctive property of the DA neuron is that it differentially responds to different types of excitatory synaptic inputs (Fig. 2a and b).

  • Models have explained these properties and connected them with one another and with particular current compositions (Figs. 3 and 4).


Oscillatory Mechanism Bath Application Plateau Potential Burst Firing Subthreshold Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249–2261PubMedGoogle Scholar
  2. Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Rev 47(1–3):126–144PubMedCrossRefGoogle Scholar
  3. Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69PubMedCrossRefGoogle Scholar
  4. Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549–2563PubMedCentralPubMedCrossRefGoogle Scholar
  5. Canavier CC, Oprisan S, Callaway J, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98(5):3006–3022PubMedCrossRefGoogle Scholar
  6. Deister CA, Teagarden MA, Wilson CJ, Paladini CA (2009) An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci 50:15888–15897CrossRefGoogle Scholar
  7. Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7(5):e1002050PubMedCentralPubMedCrossRefGoogle Scholar
  8. Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983–1994PubMedCrossRefGoogle Scholar
  9. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890PubMedGoogle Scholar
  10. Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362PubMedCrossRefGoogle Scholar
  11. Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. J Neurosci 114(2):475–492Google Scholar
  12. Ji H, Shepard PD (2006) SK Ca2 + -activated K + channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 140(2):623–633PubMedCrossRefGoogle Scholar
  13. Johnson SW, Wu Y-N (2004) Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 1019:293–296PubMedCrossRefGoogle Scholar
  14. Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-d-aspartate: role of electrogenic sodium pump. Science 258:655–657CrossRefGoogle Scholar
  15. Komendantov AO, Canavier CC (2002) Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony. J Neurophysiol 87:1526–1541PubMedGoogle Scholar
  16. Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346–357PubMedCrossRefGoogle Scholar
  17. Kuznetsov AS, Kopell NJ, Wilson CJ (2006) Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 95:932–947PubMedCrossRefGoogle Scholar
  18. Li Y-X, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397–410PubMedCrossRefGoogle Scholar
  19. Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in chains of electrically coupled FitzHugh-Nagumo oscillations. SIAM J Appl Math 61:1763–1801CrossRefGoogle Scholar
  20. Medvedev GS, Wilson CJ, Callaway JC, Kopell N (2003) Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron. J Comput Neurosci 15:53–69PubMedCrossRefGoogle Scholar
  21. Meltzer LT, Christoffersen CL, Serpa KA (1997) Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 21(4):511–518PubMedCrossRefGoogle Scholar
  22. Morikawa H, Khodakhah K, Williams JT (2003) Two intracellular pathways medicate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 23:149–157PubMedCentralPubMedGoogle Scholar
  23. Neuhoff H, Neu A, Liss B, Roeper J (2002) Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22(4):1290–1302PubMedGoogle Scholar
  24. Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334PubMedCrossRefGoogle Scholar
  25. Ping HX, Shepard PD (1996) Apamin-sensitive Ca2 + -activated K + channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809–814PubMedCrossRefGoogle Scholar
  26. Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 49:15414–15419CrossRefGoogle Scholar
  27. Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7(12):967–975PubMedCrossRefGoogle Scholar
  28. Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. J Neurosci 80(2):545–557Google Scholar
  29. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedCrossRefGoogle Scholar
  30. Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2 + -activated K + conductance. Exp Brain Res 86:141–150PubMedCrossRefGoogle Scholar
  31. Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103PubMedGoogle Scholar
  32. Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons. Eur J Neurosci 22(12):3111–3121PubMedCrossRefGoogle Scholar
  33. Wilson CJ, Callaway JC (2000) A coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100PubMedGoogle Scholar
  34. Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21(10):3443–3456PubMedGoogle Scholar

Further Reading

  1. Kotter R, Feizelmeier M (1998) Species-dependence and relationship of morphological and electrophysiological properties in nigral compacta neurons. Prog Neurobiol 54:619–632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University & Purdue University IndianapolisIndianapolisUSA
  2. 2.Group for Neural TheoryEcole Normale Supérieure (ENS)ParisFrance