Skip to main content

Basal Ganglia: Bradykinesia Models

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 53 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anaya-Martinez V, Martinez-Marcos A, Martinez-Fong D, Aceves J, Erlij D (2006) Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience 143:477–478

    Article  CAS  Google Scholar 

  • Benazzouz A, Gross C, Dupont J, Bioulac B (1992) MPTP induced hemiparkinsonism in monkeys: behavioral, mechanographic, electromyographic and immunohistochemical studies. Exp Brain Res 90:116–120

    Article  CAS  Google Scholar 

  • Benecke R, Rothwell JC, Dick JPR (1986) Performance of simultaneous movements in patients with Parkinson’s disease. Brain 109:739–757

    Article  Google Scholar 

  • Berardelli A, Dick JPR, Rothwell JC, Day BL, Marsden CD (1986) Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 49:1273–1279

    Article  CAS  Google Scholar 

  • Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119

    Article  CAS  Google Scholar 

  • Bevan MD, Booth PAC, Eaton SA, Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18:9438–9452

    Article  CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1984) Dopamine containing systems in the CNS. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, part 1, vol 2. Elsevier, Amsterdam, pp 55–121

    Google Scholar 

  • Blessing WW, Chalmers JP (1979) Direct projection of catecholamine (presumably dopamine)-containing neurons from the hypothalamus to spinal cord. Neurosci Lett 11:35–40

    Article  CAS  Google Scholar 

  • Camarata PJ, Parker RG, Park SK, Haines SJ, Turner DA, Chae H et al (1992) Effects of MPTP induced hemiparkinsonism on the kinematics of a two-dimensional, multi-joint arm movement in the rhesus monkey. Neuroscience 48(3):607–619

    Article  CAS  Google Scholar 

  • Commissiong JW, Gentleman S, Neff NH (1979) Spinal cord dopaminergic neurons: evidence for an uncrossed nigrostriatal pathway. Neuropharmacology 18:565–568

    Article  CAS  Google Scholar 

  • Connor NP, Abbs JH (1991) Task-dependent variations in parkinsonian motor impairments. Brain 114:321–332

    PubMed  Google Scholar 

  • Contreras-Vidal JL, Stelmach G (1995) A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movements. Biol Cybern 73:467–476

    Article  CAS  Google Scholar 

  • Corcos DM, Chen CM, Quinn NP, McAuley J, Rothwell JC (1996) Strength in Parkinson’s disease: relationship to rate of force generation and clinical status. Ann Neurol 39(1):79–88

    Article  CAS  Google Scholar 

  • Cutsuridis V (2006a) Biologically inspired neural architectures of voluntary movement in normal and disordered states of the brain. Unpublished PhD dissertation. National and Kapodistrian University of Athens, Athens, Greece

    Google Scholar 

  • Cutsuridis V (2006b) Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia. In: Kolias S, Stafilopatis A, Duch W (eds) LNCS: vol. 4131. ICANN 2006: artificial neural networks. Springer, Berlin, pp 583–591

    Chapter  Google Scholar 

  • Cutsuridis V (2007) Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist motor units? A modeling study. Int J Neural Syst 17(4):319–327

    Article  Google Scholar 

  • Cutsuridis V (2010) Neural network modeling of voluntary single joint movement organization. II. Parkinson’s disease. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P (eds) Computational neuroscience. Springer, New York, U.S.A. pp 193–212

    Chapter  Google Scholar 

  • Cutsuridis V (2011) Origins of a repetitive and co-contractive pattern of muscle activation in Parkinson’s disease. Neural Netw 24:592–601

    Article  Google Scholar 

  • Cutsuridis V (2013) Bradykinesia models of Parkinson’s disease. Scholarpedia 8(9):30937

    Article  Google Scholar 

  • Cutsuridis V, Perantonis S (2006) A neural model of Parkinson’s disease bradykinesia. Neural Netw 19(4):354–374

    Article  Google Scholar 

  • Doudet DJ, Gross C, Arluison M, Bioulac B (1990) Modifications of precentral cortex discharge and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions. Exp Brain Res 80:177–188

    Article  CAS  Google Scholar 

  • Doudet DJ, Gross C, Lebrun-Grandie P, Bioulac B (1985) MPTP primate model of Parkinson’s disease: a mechanographic and electromyographic study. Brain Res 335:194–199

    Article  CAS  Google Scholar 

  • Elsworth JD, Deutch AY, Redmond DE, Sladek JR, Roth RH (1990) MPTP reduces dopamine and norepinephrine concentrations in the supplementary motor area and cingulate cortex of the primate. Neurosci Lett 114:316–322

    Article  CAS  Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30:365–374

    Article  CAS  Google Scholar 

  • Gaspar P, Stepniewska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325:1–21

    Article  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  Google Scholar 

  • Gibberd FB (1986) The management of Parkinson’s disease. Practitioner 230:139–146

    CAS  PubMed  Google Scholar 

  • Godaux E, Koulischer D, Jacquy J (1992) Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 31(1):93–100

    Article  CAS  Google Scholar 

  • Gross C, Feger J, Seal J, Haramburu P, Bioulac B (1983) Neuronal activity of area 4 and movement parameters recorded in trained monkeys after unilateral lesion of the substantia nigra. Exp Brain Res 7:181–193

    Article  Google Scholar 

  • Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–314

    Article  CAS  Google Scholar 

  • Johnson MD, Zhang J, Ghosh D, McIntyre CC, Vitek JL (2012) Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation. J Neurophysiol 108(2):567–577

    Article  Google Scholar 

  • Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133

    Article  CAS  Google Scholar 

  • Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci 31(28):10311–10322

    Article  CAS  Google Scholar 

  • Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. J Comput Neurosci 40(2):207–229

    Article  Google Scholar 

  • Lazarus JC, Stelmach GE (1992) Inter-limb coordination in Parkinson’s disease. Mov Disord 7:159–170

    Article  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Geschwind DH, Rakic P (1989) Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey. Neuroscience 32(3):609–627

    Article  CAS  Google Scholar 

  • Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299

    Article  CAS  Google Scholar 

  • Lewis DA, Morrison JH, Goldstein M (1988) Brainstem dopaminergic neurons project to monkey parietal cortex. Neurosci Lett 86:11–16

    Article  CAS  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  Google Scholar 

  • Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Article  CAS  Google Scholar 

  • Moroney R, Heida C, Geelen J (2008) Increased bradykinesia in Parkinson’s disease with increased movement complexity: elbow flexion-extension movements. J Comput Neurosci 25:501–519

    Article  Google Scholar 

  • Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16

    Article  CAS  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    Article  Google Scholar 

  • Obeso JA, Rodrıguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23.(Suppl 33):S548–S559

    Article  Google Scholar 

  • Parent A et al (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23:S20–S27

    Article  CAS  Google Scholar 

  • Rand MK, Stelmach GE, Bloedel JR (2000) Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia 38:203–212

    Article  CAS  Google Scholar 

  • Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4(139):1–17

    Google Scholar 

  • Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083

    Article  CAS  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    Article  CAS  Google Scholar 

  • Shirouzou M, Anraku T, Iwashita Y, Yoshida M (1990) A new dopaminergic terminal plexus in the ventral horn of the rat spinal cord. Immunohistochemical studies at the light and the electron microscopic levels. Experientia 46:201–204

    Article  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    Article  CAS  Google Scholar 

  • Takada M, Li ZK, Hattori T (1988) Single thalamic dopaminergic neurons project to both neocortex and spinal cord. Brain Res 455:346–352

    Article  CAS  Google Scholar 

  • Watts RL, Mandir AS (1992) The role of motor cortex in the pathophysiology of voluntary movement deficits associated with parkinsonism. Neurol Clin 10(2):451–469

    Article  CAS  Google Scholar 

  • Weil-Fugazza J, Godefroy F (1993) Dorsal and ventral dopaminergic innervation of the spinal cord: functional implications. Brain Res Bull 30:319–324

    Article  CAS  Google Scholar 

  • Weiss P, Stelmach GE, Adler CH, Waterman C (1996) Parkinsonian arm movements as altered by task difficulty. Parkinsonism Relat Disord 2(4):215–223

    Article  CAS  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  CAS  Google Scholar 

Further Reading

    Scholarpedia

    Wikipedia

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Vassilis Cutsuridis .

    Editor information

    Editors and Affiliations

    Section Editor information

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2018 Springer Science+Business Media, LLC, part of Springer Nature

    About this entry

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this entry

    Cutsuridis, V. (2018). Basal Ganglia: Bradykinesia Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_85-2

    Download citation

    • DOI: https://doi.org/10.1007/978-1-4614-7320-6_85-2

    • Received:

    • Accepted:

    • Published:

    • Publisher Name: Springer, New York, NY

    • Print ISBN: 978-1-4614-7320-6

    • Online ISBN: 978-1-4614-7320-6

    • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

    Publish with us

    Policies and ethics

    Chapter history

    1. Latest

      Basal Ganglia: Bradykinesia Models
      Published:
      01 September 2018

      DOI: https://doi.org/10.1007/978-1-4614-7320-6_85-2

    2. Original

      Bradykinesia Models
      Published:
      12 February 2014

      DOI: https://doi.org/10.1007/978-1-4614-7320-6_85-1