Skip to main content

Basal Ganglia: Mechanisms for Action Selection

  • Living reference work entry
  • First Online:

Definition

The basal ganglia are an interconnected circuit of fore- and midbrain nuclei common to all extant vertebrates, including the lamprey, which diverged from the main vertebrate line approximately 560 MYA. Moreover, there are analogous structures in birds and bony fish. The preservation of this circuit implies a crucial operation that solves a problem common to all vertebrates. While many functions for the basal ganglia have been proposed, our current best theory to unify these ideas is that this circuit solves the common problem of action selection. Informally put, this is the problem of how to decide what to do next.

Detailed Description

Why Action Selection?

The necessity of a mechanism for action selection is imposed by the strong constraint that complex animals have a final common motor pathway: the connections of the spinal cord and the number of muscle groups limit the set of actions that can be expressed simultaneously. Some mechanism is required to reduce the repertoire...

This is a preview of subscription content, log in via an institution.

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–272

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 53:1401–1416

    CAS  PubMed  Google Scholar 

  • Alexander ME, Wickens JR (1993) Analysis of striatal dynamics: the existence of two modes of behaviour. J Theor Biol 163:413–438

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Brown LL, Sharp FR (1995) Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. Brain Res 686:207–222

    Article  CAS  PubMed  Google Scholar 

  • Brown LL, Smith DM, Goldbloom LM (1998) Organizing principles of cortical integration in the rat neostriatum: corticostriate map of the body surface is an ordered lattice of curved laminae and radial points. J Comp Neurol 392:468–488

    Article  CAS  PubMed  Google Scholar 

  • Cherniak C (1994) Component placement optimization in the brain. J Neurosci 14:2418–2427

    CAS  PubMed  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal function. Trends Neurosci 13:277–280

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–28

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001a) A computational model of action selection in the basal ganglia I: a new functional anatomy. Biol Cyber 85:401–410

    Article  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001b) A computational model of action selection in the basal ganglia II: analysis and simulation of behaviour. Biol Cyber 85:411–423

    Article  Google Scholar 

  • Hikosaka O, Wurtz RH (1985) Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J Neurophysiol 53:292–308

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  • Humphries MD, Gurney KN (2002) The role of intra-thalamic and thalamocortical circuits in action selection. Netw Comput Neural Syst 13:131–156

    Article  CAS  Google Scholar 

  • Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942

    Article  CAS  PubMed  Google Scholar 

  • Humphries MD, Wood R, Gurney K (2010) Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS Comput Biol 6:e1001011

    Article  PubMed Central  PubMed  Google Scholar 

  • Khamassi M, Lacheze L, Girard B, Berthoz A, Guillot A (2005) Actor-critic models of reinforcement learning in the basal ganglia: from natural to artificial rats. Adapt Behav 13:131–148

    Article  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567–3583

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117:877–897

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Plenz D (2003) When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci 26:436–443

    Article  CAS  PubMed  Google Scholar 

  • Prescott TJ, Redgrave P, Gurney K (1999) Layered control architectures in robots and vertebrates. Adapt Behav 7:99–127

    Article  Google Scholar 

  • Prescott TJ, Montes-Gonzalez FM, Gurney K, Humphries MD, Redgrave P (2006) A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw 19:31–61

    Article  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 48:112–128

    Article  PubMed  Google Scholar 

  • Wickens J (1997) Basal ganglia: structure and computations. Netw Comput Neural Syst 8:R77–R109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D Humphries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Humphries, M.D. (2014). Basal Ganglia: Mechanisms for Action Selection. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_83-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_83-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics