Skip to main content

Sleep, Neural Population Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 249 Accesses

Definition

A neural population model of sleep is a mathematical model of neural populations that regulate the timing and expression of sleep/wake patterns. Specific circuits and nuclei have been identified in the mammalian brainstem and hypothalamus that play a key role in modulating the brain’s overall arousal state with a circadian (daily) rhythm. These neural populations have been the focus of most sleep modeling.

Detailed Description

Sleep is an arousal state characterized by physical inactivity, reduced sensitivity to environmental stimuli, and a range of characteristic physiological changes, including changes to the EEG associated with rapid eye movement (REM) and non-REM (NREM) sleep in mammals. Sleep is regulated by a variety of physiological and biochemical processes (Krueger et al. 2008; Saper et al. 2010), including specific neural populations in the brainstem and hypothalamus. Various mathematical models have now been developed, providing a conduit between the underlying...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Behn CGD, Booth V (2010) Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. J Neurophysiol 103:1937–1953

    Article  Google Scholar 

  • Behn CGD, Booth V (2012) A fast-slow analysis of the dynamics of REM sleep. SIAM J Appl Dyn Syst 11:212–242

    Article  Google Scholar 

  • Behn CGD, Brown EN, Scammell TE, Kopell NJ (2007) Mathematical model of network dynamics governing mouse sleep–wake behavior. J Neurophysiol 97:3828–3840

    Article  PubMed Central  PubMed  Google Scholar 

  • Behn CGD, Ananthasubramaniam A, Booth V (2013) Contrasting existence and robustness of REM/non-REM cycling in physiologically based models of REM sleep regulatory networks. SIAM J Appl Dyn Syst 12:279–314

    Article  Google Scholar 

  • Daan S, Beersma DG, BorbĂ©ly AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R183

    PubMed  CAS  Google Scholar 

  • Deco G, Hagmann P, Hudetz AG, Tononi G (2013) Modeling resting-state functional networks when the cortex falls sleep: local and global changes. Cereb Cortex (in press)

    Google Scholar 

  • Foster RG, Kreitzman L (2005) Rhythms of life. Yale University Press, New Haven

    Google Scholar 

  • Fulcher BD, Phillips AJK, Robinson PA (2008) Modeling the impact of impulsive stimuli on sleep-wake dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 78:051920

    Article  PubMed  CAS  Google Scholar 

  • Fulcher BD, Phillips AJK, Robinson PA (2010) Quantitative physiologically based modeling of subjective fatigue during sleep deprivation. J Theor Biol 264:407–419

    Article  PubMed  CAS  Google Scholar 

  • Gleit RD, Behn CGD, Booth V (2013) Modeling interindividual differences in spontaneous internal desynchrony patterns. J Biol Rhythms 28:339–355

    Article  PubMed  Google Scholar 

  • Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93:1671–1698

    Article  PubMed  Google Scholar 

  • Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar R, Bose A, Mallick BN (2012) A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One 7:e42059

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    PubMed  CAS  Google Scholar 

  • Phillips AJK, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167–179

    Article  PubMed  CAS  Google Scholar 

  • Phillips AJK, Robinson PA (2008) Sleep deprivation in a quantitative physiologically based model of the ascending arousal system. J Theor Biol 255:413–423

    Article  PubMed  CAS  Google Scholar 

  • Phillips AJK, Chen PY, Robinson PA (2010a) Probing the mechanisms of chronotype using quantitative modeling. J Biol Rhythms 25:217–227

    Article  PubMed  CAS  Google Scholar 

  • Phillips AJK, Robinson PA, Kedziora DJ, Abeysuriya RG (2010b) Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLoS Comput Biol 6:e1000826

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Phillips AJK, Czeisler CA, Klerman EB (2011) Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology. J Biol Rhythms 26:441–453

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips AJK, Fulcher BD, Robinson PA, Klerman EB (2013) Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput Biol 9:e1003213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Postnova S, Layden A, Robinson PA, Phillips AJK, Abeysuriya RG (2012) Exploring sleepiness and entrainment on permanent shift schedules in a physiologically based model. J Biol Rhythms 27:91–102

    Article  PubMed  Google Scholar 

  • Puckeridge M, Fulcher BD, Phillips AJK, Robinson PA (2010) Incorporation of caffeine into a quantitative model of fatigue and sleep. J Theor Biol 273:44–54

    Article  PubMed  CAS  Google Scholar 

  • Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Math Biol 60:615–644

    Article  PubMed  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E Stat Nonlin Soft Matter Phys 65:041924

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Phillips AJK, Kim JW, Roberts JA (2010) Phase transitions in physiologically-based multiscale mean-field brain models. In: Steyn-Ross DA, Steyn-Ross ML (eds) Modeling phase transitions in the brain. Springer, New York, pp 179–201

    Chapter  Google Scholar 

  • Robinson PA, Phillips AJK, Fulcher BD, Puckeridge M, Roberts JA, Rennie CJ (2011) Quantitative modeling of sleep dynamics. In: Hutt A (ed) Sleep and anesthesia. Springer, New York, pp 45–68

    Chapter  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sedigh-Sarvestani M, Schiff SJ, Gluckman B (2012) Reconstructing mammaliansleep dynamics with data assimilation. PLoS Comput Biol 8:e1002788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steyn-Ross DA, Steyn-Ross ML, Sleigh JW, Wilson MT, Gillies IP, Wright JJ (2005) The sleep cycle modelled as a cortical phase transition. J Biol Phys 31(3–4):547–569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M (2006) A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 95:2055–2069

    Article  PubMed  Google Scholar 

  • Van Dongen HPA (2004) Comparison of mathematical model predictions to experimental data of fatigue and performance. Aviat Space Environ Med 75:A15–A36

    PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. K. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Phillips, A.J.K. (2013). Sleep, Neural Population Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics