Skip to main content

Low-Frequency Oscillations (Anesthesia and Sleep): Overview

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Delta oscillations; Relay mode; Sleep; Sleep oscillations; Sleep spindles; Slow oscillations; Slow rhythms; Thalamic bursting

Definition

The transition from waking to sleep or to anesthesia is characterized by an increase in the amplitude and a decrease in the frequency of the electrical activity recorded in the electroencephalogram (EEG). The spectral composition of the EEG changes from one dominated by low-amplitude fast frequencies in the beta gamma range to one dominated by the frequency ranges of slow (0.1–1 Hz), delta (1–4 Hz), and sigma (7–15 Hz, which corresponds with sleep spindles) oscillations (Silva and Schomer 2011). The dramatic changes in the EEG during the transition from waking to sleep correlate with the deafferentation of the forebrain from the external world and the suppression of consciousness. This section describes cellular mechanisms and computer models of these oscillatory processes and their functional consequences. In this overview entry, some...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amzica F, Steriade M (1995) Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J Neurophysiol 73:20–38

    CAS  PubMed  Google Scholar 

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83

    Article  CAS  PubMed  Google Scholar 

  • Bal T, von Krosigk M, McCormick DA (1995) Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J Physiol 483(Pt 3):665–685. PMCID: PMC1157809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Cunningham MO, Davies CH, Traub RD, Whittington MA (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761. PMCID: PMC3693056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604–622

    CAS  PubMed  Google Scholar 

  • Contreras D, Steriade M (1997a) State-dependent fluctuations of low-frequency rhythms in corticothalamic networks. Neuroscience 76:25–38

    Article  CAS  PubMed  Google Scholar 

  • Contreras D, Steriade M (1997b) Synchronization of low-frequency rhythms in corticothalamic networks. Neuroscience 76:11–24

    Article  CAS  PubMed  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587–604. PMCID: PMC1189159

    CAS  PubMed Central  PubMed  Google Scholar 

  • da Silva FL, Schomer DL (eds) (2011) Niedermeyer’s Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Deschenes M, Roy JP, Steriade M (1982) Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization. Brain Res 239:289–293

    Article  CAS  PubMed  Google Scholar 

  • Deschenes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219

    CAS  PubMed  Google Scholar 

  • Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol 447:215–234. PMCID: PMC1176033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez C, Cox C, Rinzel J, Sherman S (2001) Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. J Neurosci 21:1022–1032

    CAS  PubMed  Google Scholar 

  • Hirsch JC, Fourment A, Marc ME (1983) Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res 259:308–312

    Article  CAS  PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984a) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247. PMCID: PMC1199335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984b) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122:73–82

    CAS  PubMed  Google Scholar 

  • Jahnsen H, Llinas R (1984c) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226. PMCID: PMC1199334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The thalamus. Cambridge University Press, Cambridge

    Google Scholar 

  • Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    Article  CAS  PubMed  Google Scholar 

  • Lu SM, Guido W, Sherman SM (1993) The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat’s lateral geniculate nucleus. Vis Neurosci 10:631–642

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Feeser HR (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39:103–113

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318. PMCID: PMC1181775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Article  CAS  PubMed  Google Scholar 

  • Nunez A, Amzica F, Steriade M (1992a) Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events. Neuroscience 51:269–284

    Article  CAS  PubMed  Google Scholar 

  • Nunez A, Curro Dossi R, Contreras D, Steriade M (1992b) Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat. Neuroscience 48:75–85

    Article  CAS  PubMed  Google Scholar 

  • Oakson G, Steriade M (1982) Slow rhythmic rate fluctuations of cat midbrain reticular neurons in synchronized sleep and waking. Brain Res 247:277–288

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du systeme nerveux de l’homme et des vertebres. Malione, Paris

    Google Scholar 

  • Steriade M (1993) Cholinergic blockage of network- and intrinsically generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons. Prog Brain Res 98:345–355

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–276

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2003) Thalamus. Wiley

    Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  • Steriade M, Oakson G, Ropert N (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp Brain Res 46:37–51

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559

    CAS  PubMed  Google Scholar 

  • Steriade M, Contreras D, Amzica F (1994) Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci 17:199–208

    Article  CAS  PubMed  Google Scholar 

  • von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Contreras, D. (2014). Low-Frequency Oscillations (Anesthesia and Sleep): Overview. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_754-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_754-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics