Skip to main content

Metric Space Analysis of Neural Information Flow

  • 295 Accesses

In the metric-space approach to spike train analysis, spike trains are regarded as points in a metric space, that is, a space with a distance defined between any pair of points.

Spike Train Metrics

The Victor-Purpura metric (Victor and Purpura 1996) is one common way to define a metric distance between spike trains. The Victor-Purpura metric considers a fictional total cost for transforming one spike train into another using three basic operations: spike insertion, spike deletion and spike movement. Each basic operation is given an individual cost; one for inserting or deleting a spike and q|δt| for moving a spike a temporal distance δt. The cost-per-time, q, is a parameter, with the timescale 2/q thought of as corresponding to the temporal precision of spike times in the metric. The distance between the two spike trains is then defined as the cost of the cheapest transformation of one to the other. In other words, the distance between spike trains x and y is given by

$$ d\left(x,\...

This is a preview of subscription content, log in via an institution.

References

  • Aronov D, Reich DS, Mechler F, Victor JD (2003) Neural coding of spatial phase in v1 of the macaque monkey. J Neurophysiol 89:3304–3327

    Article  PubMed  Google Scholar 

  • Houghton C (2009) Studying spike trains using a van Rossum metric with a synapses-like filter. J Comput Neurosci 26(1):149–155

    Article  PubMed  Google Scholar 

  • Houghton C, Kreuz T (2013) Measures of spike train synchrony: from single neurons to populations. In: Schuster H, Pesenson M (eds) Multiscale analysis and nonlinear dynamics: from molecules to the brain. Wiley, Weinheim, Germany

    Google Scholar 

  • Houghton C, Sen K (2008) A new multi-neuron spike-train metric. Neural Comput 20(6):1495–1511

    Article  PubMed Central  PubMed  Google Scholar 

  • Houghton C, Victor J (2012) Spike rates and spike metrics, chap. 8. In: Kreiman G, Kriegeskorte N (eds) Visual population codes: toward a common multivariate framework for cell recording and functional imaging. MIT Press, Cambridge, MA

    Google Scholar 

  • Kozachenko LF, Leonenko NN (1987) Sample estimate of the entropy of a random vector. Probl Peredachi Inf 23(2):9–16

    Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69:066138

    Article  Google Scholar 

  • Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165(1):151–161

    Article  PubMed  Google Scholar 

  • Nemenman G, Lewen W, Bialek W, de Ruyter van Steveninck R (2007) Neural coding of natural stimuli: information at sub-millisecond resolution. BMC Neurosci 8(Suppl 2):S7

    Article  Google Scholar 

  • Paiva ARC, Park I, Principe JC (2009) A reproducing kernel hilbert space framework for spike train signal processing. Neural Comput 21(2):424–449

    Article  PubMed  Google Scholar 

  • Paninski L (2003) Estimation of entropy and mutual information. Neural Comput 15(6):1191–1253

    Article  Google Scholar 

  • Panzeri S, Senatore R, Montemurro MA, Petersen RS (2007) Correcting for the sampling bias problem in spike train information measures. J Neurophysiol 98(3):1064–1072

    Article  PubMed  Google Scholar 

  • Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80(1):197–200

    Article  CAS  Google Scholar 

  • Tobin RJ, Houghton CJ (2013) A kernel-based calculation of spike train information. Entropy 15(10):4540–4552. http://www.mdpi.com/1099-4300/15/10/4540

  • van Rossum M (2001) A novel spike distance. Neural Comput 13:751–763

    Article  PubMed  Google Scholar 

  • Victor D (2002) Binless strategies for estimation of information from neural data. Phys Rev E 66(5):051903

    Article  Google Scholar 

  • Victor D (2005) Spike train metrics. Curr Opin Neurobiol 15(5):585–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Houghton, C. (2014). Metric Space Analysis of Neural Information Flow. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_744-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_744-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Metric Space Analysis of Neural Information Flow
    Published:
    28 June 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_744-2

  2. Original

    Metric Space Analysis of Neural Information Flow
    Published:
    28 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_744-1