Skip to main content

Compartmental Models of Spinal Motoneurons

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 213 Accesses

Definition

Compartmental neuron models represent the complex geometry of a neuron as a set of electrically connected compartments, each of which is considered to be isopotential (i.e., the membrane voltage does not vary along the length of the compartment). Compartmental models of spinal motoneurons can be divided into three groups based on the extent to which they rely on a simplified version of dendritic morphology: (1) detailed compartmental models, which attempt to accurately represent the dendritic morphology based on anatomical reconstructions of stained motoneurons; (2) cable models, in which the branching structure of the dendritic tree is collapsed into one or more equivalent cables; and (3) two-compartment models, in which the dendritic tree is represented by a single lumped compartment that is connected to a compartment representing the soma and initial portion of the axon.

Detailed Description

Motoneurons have the largest dendritic trees of any neuron in the mammalian...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barrett JN (1975) Motoneuron dendrites: role in synaptic integration. Fed Proc 34:1398–1407

    CAS  PubMed  Google Scholar 

  • Bender KJ, Trussell LO (2012) The physiology of the axon initial segment. Annu Rev Neurosci 35:249–265

    Article  CAS  PubMed  Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    CAS  PubMed  Google Scholar 

  • Bui TV, Ter-Mikaelian M, Bedrossian D, Rose PK (2006) Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents. J Neurophysiol 95:225–241

    Article  CAS  PubMed  Google Scholar 

  • Bui TV, Grande G, Rose PK (2008) Relative location of inhibitory synapses and persistent inward currents determines the magnitude and mode of synaptic amplification in motoneurons. J Neurophysiol 99:583–594

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke RE (1967) Composite nature of the monosynaptic excitatory postsynaptic potential. J Neurophysiol 30:1114–1137

    CAS  PubMed  Google Scholar 

  • Burke RE, Glenn LL (1996) Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat. J Comp Neurol 372:465–485

    Article  CAS  PubMed  Google Scholar 

  • Carlin KP, Bui TV, Dai Y, Brownstone RM (2009) Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree. J Neurosci 29:5343–5353

    Article  CAS  PubMed  Google Scholar 

  • Clements JD, Redman SJ (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol Lond 409:63–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cushing S, Bui T, Rose PK (2005) Effect of nonlinear summation of synaptic currents on the input–output properties of spinal motoneurons. J Neurophysiol 94:3465–3478

    Article  CAS  PubMed  Google Scholar 

  • Dodge FA, Cooley JW (1973) Action potential of the motoneuron. IBM J Res Dev 17:219–229

    Article  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin

    Book  Google Scholar 

  • Elbasiouny SM, Bennett DJ, Mushahwar VK (2005) Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution. J Neurophysiol 94:3961–3974

    Article  CAS  PubMed  Google Scholar 

  • Elbasiouny SM, Bennett DJ, Mushahwar VK (2006) Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs. J Physiol 570:355–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleshman JW, Segev I, Burke RB (1988) Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol 60:60–85

    CAS  PubMed  Google Scholar 

  • Grande G, Bui TV, Rose PK (2007a) Effect of localized innervation of the dendritic trees of feline motoneurons on the amplification of synaptic input: a computational study. J Physiol 583:611–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grande G, Bui TV, Rose PK (2007b) Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study. J Neurophysiol 97:4023–4035

    Article  PubMed Central  PubMed  Google Scholar 

  • Heckman CJ, Lee RH, Brownstone RM (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci 26:688–695

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Johnson M, Mottram C, Schuster J (2008) Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14:264–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyer CB, Llinas R (1977) Control of rhythmic firing in normal and axotomized cat spinal motoneurons. J Neurophysiol 40:480–488

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 116:500–544 (London)

    Google Scholar 

  • Jack JJ, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Oxford University Press, Oxford

    Google Scholar 

  • Kernell D (2006) The motoneurone and its muscle fibers. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kim H, Jones KE (2010) Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models. J Comput Neurosci

    Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Korogod SM, Kulagina IB, Horcholle-Bossavit G, Gogan P, Tyc-Dumont S (2000) Activity-dependent reconfiguration of the effective dendritic field of motoneurons. J Comp Neurol 422:18–34

    Article  CAS  PubMed  Google Scholar 

  • Kuno M, Llinas R (1970) Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J Physiol 210:807–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powers RK, Binder MD (2001) Input–output functions of mammalian motoneurons. Rev Physiol Biochem Pharmacol 143:137–263

    Article  CAS  PubMed  Google Scholar 

  • Powers RK, Elbasiouny SM, Rymer WZ, Heckman CJ (2012a) Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study. J Neurophysiol 107:808–823

    Article  PubMed Central  PubMed  Google Scholar 

  • Powers RK, Nardelli P, Cope TC (2012b) Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons. J Neurophysiol 108:753–759

    Article  PubMed Central  PubMed  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Handbook of physiology, The nervous system, cellular biology of neurons. American Physiological Society, Bethesda, pp 39–97

    Google Scholar 

  • Rall W, Burke RE, Smith TG, Nelson PG, Frank K (1967) Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol 30:1169–1193

    CAS  PubMed  Google Scholar 

  • Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 86:S159–S185

    Google Scholar 

  • Schwindt PC, Calvin WH (1973) Nature of conductances underlying rhythmic firing in cat spinal motoneurons. J Neurophysiol 36:955–973

    CAS  PubMed  Google Scholar 

  • Segev I, Fleshman JW, Burke RB (1989) Compartmental models of complex neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling: from synapses to networks. MIT Press, Cambridge, MA

    Google Scholar 

  • Segev I, Fleshman JWJ, Burke RE (1990) Computer simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons. J Neurophysiol 64:648–660

    CAS  PubMed  Google Scholar 

  • Sernagor E, Yarom Y, Werman R (1986) Sodium-dependent regenerative responses in dendrites of axotomized motoneurons in the cat. Proc Natl Acad Sci U S A 83:7966–7970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro NP, Lee R (2007) Synaptic amplification versus bistablility in motoneuron dendritic processing: a top-down modeling approach. J Neurophysiol 97:3948–3960

    Article  PubMed  Google Scholar 

  • Traub RD, Llinas R (1977) The spatial distribution of ionic conductances in normal and axotomized motoneurons. Neuroscience 2:829–849

    Article  Google Scholar 

  • Venugopal S, Hamm TM, Crook SM, Jung R (2011) Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury. J Neurophysiol 106:2167–2179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Powers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Powers, R. (2014). Compartmental Models of Spinal Motoneurons. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_741-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_741-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics