Skip to main content

Cardiac Excitable Tissue Pathology (Ion Channels)

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The generation of the heartbeat is generated by cellular level electrical activity in the form of action potentials that arises as a result of timed opening and closing of a variety of cardiac ion channels. When this tightly coupled interplay of ion channels is perturbed by any number of varied mechanisms including, but not limited to, genetic perturbations, altered Ca2+ signaling, deranged subcellular signaling, disruptions in cell ultrastructure or coupling, ionic dysregulation, or direct insult, an arrhythmogenic substrate can develop.

Detailed Description

Ionic Mechanisms of Cardiac Action Potential

Action potentials can be divided into noncontractile pacemaker cells and contractile cells that require an external stimulus, such as atrial and ventricular cells (Demir 2004). Numerous action potential morphologies exist and vary depending on the location in the myocardium. The action potential of contractile cells generally has 4 phases. Phase 0 is the rapid depolarizing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C, Yan G, Shimizu W, Burashinikov A (1999) Electrical heterogeneity, the ECG, and cardiac arrhythmias. In: DP Zipes, Jaife J (ed) Cardiac electrophysiology: from cell to bedside. Saunders, Philadelphia, pp 222-238

    Google Scholar 

  • Bebarova M, O'Hara T, Geelen JL, Jongbloed RJ, Timmermans C, Arens YH, Rodriguez LM, Rudy Y, Volders PG (2008) Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation. Am J Physiol Heart Circ Physiol 295(1):H48–H58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  CAS  PubMed  Google Scholar 

  • Bers DM, Grandi E (2009) Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. J Cardiovasc Pharmacol 54(3):180–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, van Der Hout AH, Mannens MM, Wilde AA (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Brugada J, Brugada R, Brugada P (1998) Right bundle-branch block and ST-segment elevation in leads V-1 through V-3 - A marker for sudden death in patients without demonstrable structural heart disease. Circulation 97(5):457–460

    Article  CAS  PubMed  Google Scholar 

  • Clancy CE, Kass RS (2002) Defective cardiac ion channels: from mutations to clinical syndromes. J Clin Invest 110(8):1075–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clancy CE, Tateyama M, Liu H, Wehrens XH, Kass R (2003) Non-equilibrium gating in cardiac Na + channels: an original mechanism of arrhythmia. Circulation 107:2233–2237

    Article  CAS  PubMed  Google Scholar 

  • Currie S, Loughrey CM, Craig MA, Smith GL (2004) Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 377(Pt 2):357–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demir SS (2004) Computational modeling of cardiac ventricular action potentials in rat and mouse: review. Jpn J Physiol 54:523–530

    Article  PubMed  Google Scholar 

  • Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S (2002) Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 110:1201–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchhefer U, Schmitz W, Scholz H, Neumann J (1999) Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42(1):254–261

    Article  CAS  PubMed  Google Scholar 

  • Lankipalli RS, Zhu T, Guo D, Yan GX (2005) Mechanisms underlying arrhythmogenesis in long QT syndrome. J Electrocardiol 38:69–73

    Article  PubMed  Google Scholar 

  • Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76(3):351–365

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Tateyama M, Clancy C, Abriel H, Kass R (2002) Channel openings are necessary but not sufficient for use-dependent block of cardiac Na + channels by flecainide evidence from the analysis of disease-linked mutations. Journal of General Physiology 120:39–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A (2008) Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 294(4):H1597–H1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi S, Mitamura H, Fukuda Y, Tanimoto K, Hagiwara Y, Kanki H, Takatsuki S, Murata M, Miyazaki T, Ogawa S (2005) Link between SCN5A mutation and the Brugada syndrome ECG phenotype: simulation study. Circ J 69(5):567–575

    Article  CAS  PubMed  Google Scholar 

  • Moreno JD, Clancy CE (2009) Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy. Drug Discov Today Dis Models 6(3):71–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori M, Konno T, Ozawa T, Murata M, Imoto K, Nagayama K (2000) Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2 + -sensitivity? Biochemistry 39(6):1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Noble D, Rudy Y (2001) Models of cardiac ventricular action potentials: interative interaction between experiment and simulation. Phil Trans R Soc Lond A 359:1127–1142

    Article  Google Scholar 

  • Petitprez S, Jespersen T, Pruvot E, Keller DI, Corbaz C, Schlapfer J, Abriel H, Kucera JP (2008) Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome. Cardiovasc Res 78(3):494–504

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM (1999a) Genetic and molecular basis of cardiac arrhythmias: impact on clinical management parts I and II. Circulation 99(4):518–528

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM (1999b) Genetic and molecular basis of cardiac arrhythmias: impact on clinical management part III. Circulation 99(5):674–681

    Article  CAS  PubMed  Google Scholar 

  • Rice J, Jafri MS (2001) Modelling calcium handling in cardiac cells. Phil Trans R Soc Lond A 359:1143–1157

    Article  CAS  Google Scholar 

  • Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM (1996) Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 94(8):1996–2012

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Liu N, Priori SG (2009) Sodium channel mutations and arrhythmias. Nat Rev Cardiol 6:337–348

    Article  CAS  PubMed  Google Scholar 

  • Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA, Balser JR (2001) A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409(6823):1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Tateyama M, Liu H, Yang AS, Cormier JW, Kass RS (2004) Structural effects of an LQT-3 mutation on heart Na + channel gating. Biophys J 86:1843–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas G, Gurung IS, Killeen MJ, Hakim P, Goddard CA, Mahaut-Smith MP, Colledge WH, Grace AA, Huang CL (2007) Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. J Physiol (Lond) 578:85–97

    Article  CAS  Google Scholar 

  • Undrovinas A, Maltsev VA (2008) Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 6(4):348–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vecchietti S, Grandi E, Severi S, Rivolta I, Napolitano C, Priori SG, Cavalcanti S (2007) In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. Am J Physiol Heart Circ Physiol 292(1):H56–65. Epub 2006 Sep 15

    Google Scholar 

  • Viswanathan PC, Rudy Y (1999) Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res 42:530–542

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan PC, Rudy Y (2000) Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101:1192–1198

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na + channels. J Clin Invest 116(12):3127–3138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  CAS  PubMed  Google Scholar 

  • Wang DW, Yazawa K, George AL, Bennett PB (1996) Characterization of human cardiac Na + channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci USA 93(23):13200–13205

    Google Scholar 

  • Wingo TL, Shah VN, Anderson ME, Lybrand TP, Chazin WJ, Balser JR (2004) An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability. Nat Struct Mol Biol 11(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Yan GX, Antzelevitch C (1999) Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 100(15):1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Tranquillo J, Neplioueva V, Bursac N, Grant AO (2007) Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am J Physiol Heart Circ Physiol 292(1):H399–H407

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen E. Clancy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

MDPhD, J.D.M., Ph.D., C.E.C. (2013). Cardiac Excitable Tissue Pathology (Ion Channels). In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_737-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_737-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics