Skip to main content

Neuromuscular Control Systems, Models of

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas JJ (2011) Biomimetic adaptive control algorithms. In: Jung R (ed) Biohybrid systems: nerves, interfaces and machines. Wiley-VCH, Weinheim

    Google Scholar 

  • Abbas JJ, Abraham A (2014) Biomimetic approaches to physiological control. In: Bronzino JD (ed) The biomedical engineering handbook. CRC, Boca Raton

    Google Scholar 

  • Abbas JJ, Full RJ (2000) Neuromechanical interaction in cyclic movements. In: Winters JM, Crago PE (eds) Biomechanics and neural control of movement. Springer, New York, pp 177–191

    Chapter  Google Scholar 

  • Abbas JJ, Riener R (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation: J Int Neuromodulation Soc 4:187–195

    Article  CAS  Google Scholar 

  • Ambroise M, Levi T, Joucla S, Yvert B, Saighi S (2013) Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front Neurosci 7:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics – using nature to inspire human innovation. Bioinspir Biomim 1:P1–P12

    Article  PubMed  Google Scholar 

  • Bicchi A, Gabiccini M, Santello M (2011) Modelling natural and artificial hands with synergies. Philos Trans R Soc Lond B Biol Sci 366:3153–3161

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdet E, Franklin DW, Milner TE (2013) Human robotics: neuromechanics and motor control. MIT Press, Cambridge, MA

    Google Scholar 

  • Cheng EJ, Loeb GE (2008) On the use of musculoskeletal models to interpret motor control strategies from performance data. J Neural Eng 5:232–253

    Article  PubMed  Google Scholar 

  • Chiel HJ, Ting LH, Ekeberg O, Hartmann MJZ (2009) The brain in its body: motor control and sensing in a biomechanical context. J Neurosci 29:12807–12814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook G, Stark L (1967) Derivation of a model for the human eye-positioning mechanism. Bull Math Biol 29:153–174

    Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2:S313–S319

    Article  PubMed  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2012) Muscle coordination is habitual rather than optimal. J Neurosci 32:7384–7391

    Article  PubMed  Google Scholar 

  • de Rugy A, Loeb GE, Carroll TJ (2013) Are muscle synergies useful for neural control? Front Comput Neurosci 7:19

    PubMed Central  PubMed  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Ekeberg O (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69:363–374

    Article  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  • Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–356

    Article  CAS  PubMed  Google Scholar 

  • Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72:425–442

    Article  CAS  PubMed  Google Scholar 

  • Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Robustness of muscle synergies during visuomotor adaptation. Front Comput Neurosci 7:120

    Article  PubMed Central  PubMed  Google Scholar 

  • Grillner S, Wallen P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Res Rev 57:2–12

    Article  PubMed  Google Scholar 

  • Harris-Warrick R, Coniglio L, Barazangi N, Guckenheimer J, Gueron S (1995) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J Neurosci 15:342–358

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2009) Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res Bull 78:13–21

    Article  CAS  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32:4230–4239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izhikevich EM (2010) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA

    Google Scholar 

  • Jung R (2011) Biohybrid systems: nerves, interfaces and machines. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophys 75:1074–1086

    CAS  Google Scholar 

  • Kambara H, Shin D, Koike Y (2013) A computational model for optimal muscle activity considering muscle viscoelasticity in wrist movements. J Neurophysiol 109:2145–2160

    Article  PubMed Central  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of neural science, 5th edn. McGraw Hill, New York

    Google Scholar 

  • Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:115–133

    Google Scholar 

  • Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol 21:636–644

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (2012) Optimal isn’t good enough. Biol Cybern 106:757–765

    Article  PubMed  Google Scholar 

  • Marmarelis VZ (1997) Modeling methodology for nonlinear physiological systems. Ann Biomed Eng 25:239–251

    Article  CAS  PubMed  Google Scholar 

  • Mileusnic MP, Brown IE, Lan N, Loeb GE (2006) Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 96:1772–1788

    Article  PubMed  Google Scholar 

  • Moberget T, Gullesen EH, Andersson S, Ivry RB, Endestad T (2014) Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J Neurosci 34:2871–2878

    Article  CAS  PubMed  Google Scholar 

  • Morasso P, Baratto L, Spada G (1999) Internal models in the control of posture. Neural Netw 12:1173–1180

    Article  PubMed  Google Scholar 

  • Peckham PH (2007) Smart prosthetics: exploring assistive devices for the body and mind. National Academies Press, Washington, DC

    Google Scholar 

  • Pinter IJ, van Soest AJ, Bobbert MF, Smeets JB (2012) Conclusions on motor control depend on the type of model used to represent the periphery. Biol Cybern 106:441–451

    Article  PubMed  Google Scholar 

  • Robinson DA (1973) Models of the saccadic eye movement control system. Biol Cybern 14:71–83

    CAS  Google Scholar 

  • Schiff SJ (2012) Neural control engineering: the emerging intersection between control theory and neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  • Schultheiss NW, Prinz AA, Butera RJ Jr (2012) Phase response curves in neuroscience: theory, experiment, and analysis. Springer, New York

    Book  Google Scholar 

  • Scott SH (2012) The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci 16:541–549

    Article  PubMed  Google Scholar 

  • Scott SH, Norman KE (2003) Computational approaches to motor control and their potential role for interpreting motor dysfunction. Curr Opin Neurol 16:693–698

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Computational elements of the adaptive controller of the human arm. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems. Morgan Kaufman, San Mateo

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (2012) Biological learning and control: how the brain builds representations, predicts events, and makes decisions. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Shenoy KV, Sahani M, Churchland MM (2013) Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 36:337–359

    Article  CAS  PubMed  Google Scholar 

  • Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28:8577–8589

    Article  CAS  PubMed  Google Scholar 

  • Ting LH, Chvatal SA, Safavynia SA, McKay JL (2012) Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. Int J Numer Methods Biomed Eng 28:1003–1014

    Article  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Van de Crommert HWAA, Mulder T, Duysens J (1998) Neural control of locomotion; part II: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 7:251–263

    Article  PubMed  Google Scholar 

  • Verdaasdonk BW, Koopman HFJM, Helm FCT (2009) Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol Cybern 101:49–61

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Stark L (1963) A discrete model for eye tracking movements. IEEE Trans Mil Electron 7:113–115

    Google Scholar 

  • Zelik KE, Huang TW, Adamczyk PG, Kuo AD (2014) The role of series ankle elasticity in bipedal walking. J Theor Biol 346:75–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Abbas, J. (2014). Neuromuscular Control Systems, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_711-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_711-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics