Skip to main content

Noninvasive Brain-Computer Interfaces

  • Living reference work entry
  • First Online:

Synonyms

Noninvasive brain-machine interface

Definition

A noninvasive brain-computer interface (BCI) is a device that allows users to send messages or commands to devices, friends, family, or others through direct, noninvasive measures of brain activity.

Introduction

BCIs are communication and control systems that do not depend on the brain’s normal output pathways such as peripheral nerves and muscles (Wolpaw et al. 2002). Hence, BCIs provide alternate methods to interact with the outside world not only for healthy people (Allison et al. 2007; Guger et al. 2009; Blankertz et al. 2010) but also for patients who cannot use their muscles but are cognitively intact (Nam et al. 2012; Sellers et al. 2010).

Noninvasive BCIs record information from sensors placed on or very close to the head. No surgery is required to implant recording devices, and noninvasive BCIs do not use any painful or hazardous methods. The most common BCI recording mechanism is the electroencephalogram (EEG), which...

This is a preview of subscription content, log in via an institution.

References

  • Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng 11(2):110–113

    Article  PubMed  Google Scholar 

  • Allison BZ, Wolpaw EW, Wolpaw JR (2007) Brain-computer interface systems: progress and prospects. Expert Rev Med Devices 4:463–474

    Article  PubMed  Google Scholar 

  • Allison BZ, Brunner C, Kaiser V, Muller-Putz GR, Neuper C, Pfurtscheller G (2010) Toward a hybrid brain-computer interface based on imagined movement and visual attention. J Neural Eng 7:26007

    Article  CAS  PubMed  Google Scholar 

  • Allison BZ, Leeb R, Brunner C, Muller-Putz GR, Bauernfeind G, Kelly JW, Neuper C (2012) Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J Neural Eng 9:013001

    Article  CAS  PubMed  Google Scholar 

  • Allison B, Dunne S, Leeb R, Millán J R, Nijholt A (2013) Recent and upcoming BCI progress: overview, analysis, and recommendations. In: Allison BZ, Dunne S, Leeb R, Millán JDR, Nijholt A (eds) Towards practical brain-computer interfaces. Springer, Berlin/Heidelberg, pp 1–13

    Chapter  Google Scholar 

  • Allison BZ, Jin J, Zhang Y, Wang X (2014) A four-choice hybrid P300/SSVEP BCI for improved accuracy. Brain-Comput Interf J 1:17–26

    Article  Google Scholar 

  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  CAS  PubMed  Google Scholar 

  • Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, Maeder C, Ramsey L, Sturm I, Curio G, Müller KR (2010) The Berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci 4:198

    Article  PubMed Central  PubMed  Google Scholar 

  • Boccanfuso JB, Chi BB, Allison BZ, Pineda JA (2005) The splotch approach to display optimization in a P3 BCI. Soc Neurosci 31

    Google Scholar 

  • Chi YM, Wang YT, Wang Y, Maier C, Jung T-P, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20(2):228–235

    Article  PubMed  Google Scholar 

  • Choi B, Jo S (2013) A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition. PLoS One 8:e74583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de Vico Fallani F, Millán Jdel R, Molinari M, Mattia D (2012) EEG-based brain-computer interface to support post-stroke motor rehabilitation of the upper limb. Conf Proc IEEE Eng Med Biol Soc 2012:4112–4115

    CAS  PubMed  Google Scholar 

  • Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-Espejo D, Pickard JD, Laureys S, Owen AM (2011) Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378(9809):2088–2094

    Article  PubMed  Google Scholar 

  • Do AH, Wang PT, King CE, Chun SN, Nenadic Z (2013) Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 10:111

    Article  PubMed Central  PubMed  Google Scholar 

  • Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T (2013) Performance of the Emotiv Epoc headset for P300-based applications. Biomed Eng Online 12:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  CAS  PubMed  Google Scholar 

  • Friedrich EV, Scherer R, Neuper C (2012) The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int J Psychophysiol 84:86–94

    Article  PubMed  Google Scholar 

  • Grosse-Wentrup M, Schölkopf B (2013) A review of performance variations in SMR-based brain – computer interfaces (BCIs). In: Guger G, Allison BZ, edlinger G (eds) Brain-computer interface research: a state-of-the-art summary. Springer, Berlin, pp 39–51

    Chapter  Google Scholar 

  • Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147

    Article  CAS  PubMed  Google Scholar 

  • Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Edlinger G (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462:94–98

    Article  CAS  PubMed  Google Scholar 

  • Guger C, Allison BZ, Großwindhager B, Prückl R, Hintermüller C, Kapeller C, Bruckner M, Krausz G, Edlinger G (2012a) How many people could use an SSVEP BCI? Front Neurosci 6:169

    PubMed Central  PubMed  Google Scholar 

  • Guger C, Krausz G, Allison BZ, Edlinger G (2012b) A comparison of dry and gel-based electrodes for P300 BCIs. Front Neurosci 6:60

    PubMed Central  PubMed  Google Scholar 

  • Hill NJ, Scholkopf B (2012) An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng 9:026011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang X, Neuper C (2011) Optimized stimulus presentation patterns for an event-related potential EEG-based brain-computer interface. Med Biol Eng Comput 49(2):181–191

    Article  PubMed  Google Scholar 

  • Jin J, Allison BZ, Kaufmann T, Kubler A, Zhang Y, Wang X, Cichocki A (2012) The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLoS One 7:e49688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapeller C, Hintermuller C, Abu-Alqumsan M, Pruckl R, Peer A, Guger C (2013) A BCI using VEP for continuous control of a mobile robot. Conf Proc IEEE Eng Med Biol Soc 2013:5254–5257

    CAS  PubMed  Google Scholar 

  • Kaufmann T, Schulz SM, Grünzinger C, Kübler A (2011) Flashing characters with famous faces improves ERP-based brain-computer interface performance. J Neural Eng 8(5):056016

    Article  CAS  PubMed  Google Scholar 

  • Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167:15–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kübler A, Müller K-R (2007) Toward brain-computer interfacing. In: Dornhege G, Millán R, Hinterberger T, McFarland DJ, Müller K-R (eds) An Introduction to brain-computer interfacing. MIT Press, Boston, pp 1–25

    Google Scholar 

  • Kübler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B (2009) A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci 1157:90–100

    Article  PubMed  Google Scholar 

  • Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G (2007) Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 15:473–482

    Article  PubMed  Google Scholar 

  • Li Y, Pan J, Wang F, Yu Z (2013) A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans Biomed Eng 60(11):3156–3166

    Article  PubMed  Google Scholar 

  • Lim CG, Lee TS, Guan C, Fung DS, Zhao Y, Teng SS, Zhang H, Krishnan KR (2012) A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PLoS One 7(10):e46692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CT, Ko LW, Chang MH, Duann JR, Chen JY, Su TP, Jung TP (2010) Review of wireless and wearable electroencephalogram systems and brain-computer interfaces–a mini-review. Gerontology 56:112–119

    Article  PubMed  Google Scholar 

  • Lule D, Noirhomme Q, Kleih SC, Chatelle C, Halder S, Demertzi A, Laureys S (2013) Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol 124:101–106

    Article  PubMed  Google Scholar 

  • Luo A, Sullivan TJ (2010) A user-friendly SSVEP-based brain-computer interface using a time-domain classifier. J Neural Eng 7:26010

    Article  PubMed  Google Scholar 

  • McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7(3):036007

    Article  PubMed Central  PubMed  Google Scholar 

  • Millan Jdel R, Mourino J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng 11:159–161

    Article  PubMed  Google Scholar 

  • Millan JD, Rupp R, Muller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M et al (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161

    PubMed Central  PubMed  Google Scholar 

  • Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Method 167(1):82–90

    Article  Google Scholar 

  • Müller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, Tavella M, Bianchi L, Kreilinger A, Ramsay A, Rohm M, Sagebaum M, Tonin L, Neuper C, Millán Jdel R (2011) Tools for Brain-Computer Interaction: A General Concept for a Hybrid BCI. Front Neuroinform 5:30

    Google Scholar 

  • Muller-Putz GR, Klobassa DS, Pokorny C, Pichler G, Erlbeck H, Real RG et al (2012) The auditory P300-based SSBCI: a door to minimally conscious patients? Conf Proc IEEE Eng Med Biol Soc 2012:4672–4675

    CAS  PubMed  Google Scholar 

  • Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2006) Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomed Tech (Berl) 51:57–63

    Article  Google Scholar 

  • Nam CS, Woo J, Bahn S (2012) Severe motor disability affects functional cortical integration in the context of brain-computer interface (BCI) use. Ergonomics 55(5):581–91

    Article  PubMed  Google Scholar 

  • Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 25(3):668–677

    Article  PubMed  Google Scholar 

  • Ortner R, Prückl R, Guger C (2013) A tactile P300-based BCI for communication and detection of awareness. Biomed Tech (Berl). doi: 10.1515/bmt-2013-4441. EPub ahead of print

    Google Scholar 

  • Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  CAS  PubMed  Google Scholar 

  • Panicker RC, Puthusserypady S, Sun Y (2011) An asynchronous P300 BCI with SSVEP-based control state detection. IEEE Trans Biomed Eng 58(6):1781–1788

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:30

    PubMed  Google Scholar 

  • Pineda JA, Juavinett A, Datko M (2012) Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses 79:790–798

    Article  CAS  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed Central  PubMed  Google Scholar 

  • Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L, Mattia D (2013) On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci 7:775

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarac M, Koyas E, Erdogan A, Cetin M, Patoglu V (2013) Brain computer interface based robotic rehabilitation with online modification of task speed. IEEE Int Conf Rehabil Robot 2013:1–7

    Google Scholar 

  • Schalk G, Guger C, Wilson AJ (2012) Hardware and software technologies. In: Wolpaw W (ed) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford/New York

    Google Scholar 

  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455

    Article  PubMed  Google Scholar 

  • Sepulveda F, Dyson M, Gan JQ, Tsui CL (2007) A comparison of mental task combinations for asynchronous EEG-based BCIs. Conf Proc IEEE Eng Med Biol Soc 2007:5055–5058

    PubMed  Google Scholar 

  • Severens M, Farquhar J, Duysens J, Desain P (2013) A multi-signature brain-computer interface: use of transient and steady-state responses. J Neural Eng 10(2):026005

    Article  PubMed  Google Scholar 

  • Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, Birbaumer N (2011) Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 42:245–252

    Article  PubMed  Google Scholar 

  • Teo WP, Chew E (2014) Is motor-imagery brain-computer interface feasible in stroke rehabilitation? PM R. doi: 10.1016/j.pmrj.2014.01.006. Epub ahead of print

    Google Scholar 

  • Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23:194–198

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang D, Miao D, Blohm G (2012) Multi-class motor imagery EEG decoding for brain-computer interfaces. Front Neurosci 6:151

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson JA, Guger C, Schalk G (2012) BCI hardware and software. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces. Oxford University Press, New York, pp 165–188

    Google Scholar 

  • Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  • Yao L, Meng J, Zhang D, Sheng X, Zhu X (2013) Combining motor imagery with selective sensation towards a hybrid-modality BCI. IEEE Trans Biomed Eng, Epub ahead of print

    Google Scholar 

  • Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D (2013) A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. J Neural Eng 10(2):026012

    Article  PubMed  Google Scholar 

  • Yu T, Li Y, Long J, Li F (2013) A hybrid brain-computer interface-based mail client. Comput Math Methods Med 2013:750934

    PubMed Central  PubMed  Google Scholar 

  • Zander TO, Lehne M, Ihme K, Jatzev S, Correia J, Kothe C, Picht B, Nijboer F (2011) A dry EEG-system for scientific research and brain-computer interfaces. Front Neurosci 5:53

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Z. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Allison, B.Z., Krusienski, D. (2014). Noninvasive Brain-Computer Interfaces. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_707-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_707-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics