Skip to main content

Olivocerebellar Pathway

  • Living reference work entry
  • First Online:
  • 398 Accesses

Definition

The olivocerebellar pathway originates in the inferior olive in the brain stem, projects to the cerebellar cortex, and terminates as climbing fibers on the dendrites of the cerebellar cortical Purkinje cells.

Detailed Description

Cerebellar Function and Information Processing

The cerebellum is involved in a wide range of processes, including cognitive functions (Thach 1996; Schmahmann 1997, 2010), but is best known for its pivotal role in the control of movement. This role is usually described as regulatory, as the cerebellum is in principle not essential for initiation or execution of movements. Rather, cerebellar deficits result in a lack of coordination (Babinski 1899, 1906; Holmes 1917, 1939; Chambers and Sprague 1955; Dow and Moruzzi 1958; Ito 1984).

The regions of the cerebellum that are related to motor control receive a wide variety of sensory inputs and generate motor-related outputs according to internal rules of computation. These rules are determined by the...

This is a preview of subscription content, log in via an institution.

References

  • Andersson G, Oscarsson O (1978) Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Exp Brain Res 32:549–564

    CAS  PubMed  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311

    Article  CAS  PubMed  Google Scholar 

  • Babinski J (1899) De l’asynergie cerebelleuse. Rev Neurol 7:806–816

    Google Scholar 

  • Babinski J (1906) Asynergie et inertie cerebelleuses. Rev Neurol 14:685–686

    Google Scholar 

  • Chambers WW, Sprague JM (1955) Functional localization in the cerebellum II: somatotopic organization in cortex and nuclei. Arch Neurol Psychiatry 74:653–680

    Article  CAS  Google Scholar 

  • Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. Minnesota University Press, Minneapolis

    Google Scholar 

  • Ekerot C-F, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342:357–360

    Article  CAS  PubMed  Google Scholar 

  • Ekerot C-F, Garwicz M, Schouenborg J (1991) Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol (Lond) 441:257–274

    CAS  Google Scholar 

  • Ekerot C-F, Jörntell H, Garwicz M (1995) Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376

    Article  CAS  PubMed  Google Scholar 

  • Garwicz M (2002) Spinal reflexes provide motor error signals to cerebellar modules – relevance for motor coordination. Brain Res Rev 40(1–3):152–165

    Article  PubMed  Google Scholar 

  • Garwicz M, Levinsson A, Schouenborg J (2002) Common principles of sensory encoding in spinal reflex modules and cerebellar climbing fibers. J Physiol (Lond) 540:1061–1069

    Article  CAS  Google Scholar 

  • Gilbert PFC, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–328

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    CAS  PubMed  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535

    Article  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M (2013) Error detection and representation in the olivo-cerebellar system. Front Neural Circ 7:1–8

    Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1974) Visual influence on rabbit horizontal vestibulo–ocular reflex presumably effected via the cerebellar flocculus. Brain Res 65:170–174

    Article  CAS  PubMed  Google Scholar 

  • Jörntell H, Garwicz M, Ekerot C-F (1996) Relation between cutaneous climbing fibre receptive fields and muscle afferent input to climbing fibres projecting to the cerebellar C3 zone in the cat. Eur J Neurosci 8:1769–1779

    Article  PubMed  Google Scholar 

  • Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Handbook of Sensory Physiology. Vol. II: Somatosensory System. Springer, New York, pp 339–380

    Google Scholar 

  • Oscarsson O (1979) Functional units of the cerebellum – sagittal zones and microzones. Trends Neurosci 2:143–145

    Article  Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 279–289

    Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–969

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (1997) The cerebellum and cognition. Academic, San Diego

    Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20(3):236–260

    Article  PubMed  Google Scholar 

  • Schouenborg J, Kalliomäki J (1990) Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb muscles in the rat. Exp Brain Res 83:67–78

    Article  CAS  PubMed  Google Scholar 

  • Schouenborg J, Weng H-R (1994) Sensorimotor transformation in a spinal motor system. Exp Brain Res 100:170–174

    Article  CAS  PubMed  Google Scholar 

  • Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fibre signals and their consequence(s). Behav Brain Sci 19:384–398

    Article  Google Scholar 

  • Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 19:411–431

    Article  Google Scholar 

  • Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70:177–188

    Article  CAS  PubMed  Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum. A review. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 207–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Garwicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Garwicz, M. (2014). Olivocerebellar Pathway. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_688-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_688-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics