Skip to main content

Cortical Maps: Activity-Dependent Development

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 240 Accesses

Synonyms

Computational maps; Self-organizing maps; Topographic maps

Definition

The term “cortical map” refers to the existence of a nonrandom relationship between the position of a neuron in the cerebral cortex and the value of some property that can be assigned to it on the basis of physiological or anatomical tests. Typically the property in question is a receptive field parameter of a sensory neuron, e.g., the position in space of the receptive field of a visual sensory neuron, or the color of a stimulus that activates it, but it might also be a projective field, e.g., the position in the body of a muscle or group of muscles activated by neurons in motor cortex, or, more speculatively, some aspect of knowledge or behavior coded for, or produced, by activity in single neurons or groups of neighboring neurons (perhaps as measured by fMRI experiments). A further qualification is that map properties often remain constant in value with depth in the cortex and vary only with lateral...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Adams DL, Horton JC (2003) Capricious expression of cortical columns in the primate brain. Nat Neurosci 6:113–114

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB, Földiák P (1989) Adaptation and decorrelation in the cortex. In: Durbin RM, Mial C, Mitchison GJ (eds) The computing neuron. Addison-Wesley, Wokingham, pp 54–72 (Chap 4)

    Google Scholar 

  • Bonin V, Histed MH, Yurgenson S, Reid RC (2011) Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J Neurosci 31:18506–18521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Born RT, Tootell RB (1991) Spatial frequency tuning of single units in macaque supragranular striate cortex. Proc Natl Acad Sci U S A 88:7066–7070

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cang JH, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA (2005) Ephrin-As guide the formation of functional maps in the visual cortex. Neuron 48:577–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carreira-Perpinãń MÁ, Lister R, Goodhill GJ (2005) A computational model for the development of multiple maps in primary visual cortex. Cereb Cortex 15:1222–1233

    Article  PubMed  Google Scholar 

  • Chapman B, Gödecke I (2000) Cortical cell orientation selectivity fails to develop in the absence of ON-center retinal ganglion cell activity. J Neurosci 20:1922–1930

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Gabitto M, Peng Y, Ryba NJP, Zuker CS (2011) A gustotopic map of taste qualities in the mammalian brain. Science 333:1262–1266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • De Valois RL, De Valois KK (1990) Spatial vision. Oxford University Press, New York Oxford

    Google Scholar 

  • Durbin R, Willshaw DJ (1987) An analogue approach to the travelling salesman problem using an elastic net method. Nature 326:689–691

    Article  PubMed  CAS  Google Scholar 

  • Durbin R and Mitchison G (1990) A dimension reduction framework for understanding cortical maps. Nature 343:644–647

    Google Scholar 

  • Eglen SJ, Gjorgjieva J (2009) Self-organization in the developing nervous system: theoretical models. HFSP J 3:176–185

    Article  PubMed Central  PubMed  Google Scholar 

  • Erwin E, Miller KD (1998) Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities. J Neurosci 18:9870–9895

    PubMed  CAS  Google Scholar 

  • Erwin E, Obermayer K, Schulten K (1995) Models of orientation and ocular dominance columns in the visual cortex: a critical comparison. Neural Comput 7:425–468

    Article  PubMed  CAS  Google Scholar 

  • Farley BJ, Yu H, Jin DZ, Sur M (2007) Alteration of visual input results in a coordinated reorganization of multiple visual cortex maps. J Neurosci 27:10299–10310

    Article  PubMed  CAS  Google Scholar 

  • Firth SI, Wang CT, Feller MB (2005) Retinal waves: mechanisms and function in visual system development. Cell Calcium 37:425-432 http://dx.doi.org/10.1016/j.ceca.2005.01.010

  • Gaiarsa J-L, Ben-Ari Y (2006) Long-term plasticity at inhibitory synapses: a phenomenon that has been overlooked. In: Kittler JT, Moss SJ (eds) The dynamic synapse: molecular methods in ionotropic receptor biology. CRC Press, Boca Raton (Chap 2)

    Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron 9:1–13

    Article  PubMed  CAS  Google Scholar 

  • Godfrey KB, Eglen SJ, Swindale NV (2009) A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth. PLoS Comput Biol 5:1–22 (e1000600)

    Article  CAS  Google Scholar 

  • Goodhill GJ and Sejnowski TJ (1997) A unifying objective function for topographic mappings. Neural Comput 9:1291-1303

    Google Scholar 

  • Goodhill GJ (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56:301–311

    Article  PubMed  CAS  Google Scholar 

  • Goodhill GJ, Xu J (2005) The development of retinotectal maps: a review of models based on molecular gradients. Network 16:5–34

    Article  PubMed  Google Scholar 

  • Grimbert F, Cang J (2012) New model of retinocollicular mapping predicts the mechanisms of axonal competition and explains the role of reverse molecular signaling during development. J Neurosci 32:9755–9768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16:1791–1807

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc B 198:1–59

    Article  CAS  Google Scholar 

  • Hübener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17:9270–9284

    PubMed  Google Scholar 

  • Hübener M, Hofer SB, Mrsic-Flogel TD (2008) Ocular dominance plasticity. In: Chalupa LM, Williams RW (eds) Eye, retina, and visual system of the mouse. MIT Press, Cambridge, Massachusetts London, England pp 439–448

    Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hyvärinen A, Hoyer PO (2001) A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res 41:2413–2423

    Article  PubMed  Google Scholar 

  • Inan M, Crair MC (2007) Development of cortical maps: perspectives from the barrel cortex. Neuroscientist 13:49–61

    Article  PubMed  CAS  Google Scholar 

  • Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20:8504–8514

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kara P, Boyd JD (2009) A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458:627–631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner D, Wong ROL (2008) A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 58:851–858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kohonen T (1997) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  • Langner G, Ochse M (2006) The neural basis of pitch and harmony in the auditory system. Music Sci 10(1 suppl):185–208

    Article  Google Scholar 

  • LeVay S, Stryker MP, Shatz CJ (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study. J Comp Neurol 179:223–244

    Article  PubMed  CAS  Google Scholar 

  • Lu HD, Roe AW (2008) Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb Cortex 18:516–533

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcus G (2004) The birth of the mind. Basic Books, New York

    Google Scholar 

  • McLaughlin T, O’Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    Article  PubMed  CAS  Google Scholar 

  • Miikkulainen R, Bednar J, Choe Y, Sirosh J (2005) Computational maps in the visual cortex. Springer, New York, NY

    Google Scholar 

  • Miller KD (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J Neurosci 14:409–441

    PubMed  CAS  Google Scholar 

  • Miller KD, Keller JB, Stryker MP (1989) Ocular dominance column development: analysis and simulation. Science 245:605–615

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283:53–77

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nauhaus I, Nielsen KJ, Disney AA, Callaway EM (2012) Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci 15:1683–1690

    Article  PubMed  CAS  Google Scholar 

  • Obermayer K, Blasdel G (1997) Singularities in primate orientation maps. Neural Comput 9:555–575

    Article  PubMed  CAS  Google Scholar 

  • Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603

    Article  PubMed  CAS  Google Scholar 

  • Olshausen B, Field D (1996) Emergence of simple-cell receptive fields properties by learning a sparse code for natural images. Nature 381:607–609

    Article  PubMed  CAS  Google Scholar 

  • Piepenbrock C, Obermayer K (2000) The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning. Biol Cybern 82:345–353

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Ayoub AE, Breunig JJ, Dominguez MH (2009) Decision by division: making cortical maps. Trends Neurosci 32:291–301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol 88:455–463

    PubMed  Google Scholar 

  • Sengpiel F, Kind PC (2002) The role of activity in development of the visual system. Curr Biol 12:R818–R826

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Grinvald A (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J Neurosci 16:6945–6964

    PubMed  CAS  Google Scholar 

  • Stafford BK, Sher A, Litke AM, Feldheim DA (2009) Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64:200–212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swindale NV (1982) A model for the formation of orientation columns. Proc R Soc B 215:211–230

    Article  CAS  Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: a review of models. Netw Comput Neural Syst 7:161–247

    Article  CAS  Google Scholar 

  • Swindale NV (2000) How many maps are there in visual cortex? Cereb Cortex 10:633–643

    Article  PubMed  CAS  Google Scholar 

  • Swindale NV (2003) Development of ocular dominance stripes, orientation selectivity, and orientation columns. In: van Ooyen A (ed) Modeling neural development. MIT Press, Cambridge, MA (Chap 12)

    Google Scholar 

  • Swindale NV (2004) How different feature spaces may be represented in cortical maps. Network 15:217–242

    Article  PubMed  CAS  Google Scholar 

  • Swindale NV, Matsubara JA, Cynader MS (1987) Surface organization of orientation and direction selectivity in cat area 18. J Neurosci 7:1414–1427

    PubMed  CAS  Google Scholar 

  • Tomita K, Sperling M, Cambridge SB, Bonhoeffer T, Hübener M (2013) A molecular correlate of ocular dominance columns in the developing mammalian visual cortex. Cereb Cortex 23(11):2531–2541 doi: 10.1093/cercor/bhs232

    Article  PubMed  Google Scholar 

  • Torborg CL, Feller MB (2005) Spontaneous patterned retinal activity and the refinement of retinal projections Progress in Neurobiol 76:213–235

    Article  Google Scholar 

  • Van Hooser SD, Heimel JA, Chung S, Nelson SB, Toth LJ (2005) Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J Neurosci 25:19–28

    Article  PubMed  CAS  Google Scholar 

  • Vincent BT, Baddeley RJ, Troscianko T, Gilchrist ID (2005) Is the early visual system optimised to be energy efficient? Network 16:175–190

    Article  PubMed  Google Scholar 

  • Warland DK, Huberman AD, Chalupa LM (2006) Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. J Neurosci 26:5190–5197

    Article  PubMed  CAS  Google Scholar 

  • Weliky M, Bosking WH, Fitzpatrick DA (1996) Systematic map of direction preference in primary visual cortex. Nature 379:725–728

    Article  PubMed  CAS  Google Scholar 

  • White L, Fitzpatrick D (2007) Vision and cortical map development. Neuron 56:327–338

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol 158:307–318

    Article  PubMed  CAS  Google Scholar 

  • Wolf F, Geisel T (1998) Spontaneous pinwheel annihilation during visual development. Nature 395:73–78

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47

    Article  PubMed  CAS  Google Scholar 

  • Wong ROL, Meister M, Shatz CJ (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11:923–938

    Article  PubMed  CAS  Google Scholar 

  • Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yates PA, Holub AD, McLaughlin T, Sejnowski TJ, O’Leary DD (2004) Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. J Neurobiol 59:95–113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu H, Farley BJ, Jin DZ, Sur M (2005) The coordinated mapping of visual space and response features in visual cortex. Neuron 47:267–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Swindale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Swindale, N. (2014). Cortical Maps: Activity-Dependent Development. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_670-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_670-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics