Skip to main content

Coordinate Transformations, Role of Spinal Cord in

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Descending control of spinal circuitry in voluntary movements; Role of descending pathways in extrinsic to intrinsic coordinate transformation; Spinal control of voluntary movements

Definition

The process through which a motor target in the external environment is translated into a body-centered coordinate system is called coordinate transformation. In the motor system, this translation is often referred to as the transformation of an externally defined (e.g., in a retinotopic coordinate frame) target into a muscle-based (or intrinsically defined) motor command. Multiple cortical areas are known to be involved in this process. Many of these areas, including pre- and post-central sites, project downstream to activate directly and indirectly spinal neurons. The interaction of this extensive system of descending pathways with spinal circuitry may further adjust motor commands before they reach target muscles in a final processing step of coordinate transformation.

Detailed...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asher I, Zinger N, Yanai Y, Israel Z, Prut Y (2010) Population-based corticospinal interactions in macaques are correlated with visuomotor processing. Cereb Cortex 20:241–252

    Article  PubMed  Google Scholar 

  • Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27:225–230

    Article  CAS  PubMed  Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Mountcastle JM, Brookhart VB (eds) The nervous system. American Physiological Society, Bethesda, pp 509–95

    Google Scholar 

  • Bizzi E, Tresch MC, Saltiel P, d’Avella A (2000) New perspectives on spinal motor systems. Nat Rev Neurosci 1:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, Cheung VC, d’Avella A, Saltiel P, Tresch M (2008) Combining modules for movement. Brain Res Rev 57:125–133

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682

    Article  CAS  PubMed  Google Scholar 

  • Evarts EV, Shinoda Y, Wise SP (1984) Neurophysiological approaches to higher brain functions. Wiley, New York

    Google Scholar 

  • Fetz EE (1992) Are movement parameters recognizably coded in the activity of single neurons. Behav Brain Sci 15:679–690

    Google Scholar 

  • Fetz EE, Perlmutter SI, Prut Y, Maier MA (1999) Primate spinal interneurons: muscle fields and response properties during voluntary movement [in process citation]. Prog Brain Res 123:323–330

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236

    Article  CAS  PubMed  Google Scholar 

  • Graziano MS, Aflalo TN (2007) Mapping behavioral repertoire onto the cortex. Neuron 56:239–251

    Article  CAS  PubMed  Google Scholar 

  • Harel R, Asher I, Cohen O, Israel Z, Shalit U et al (2008) Computation in spinal circuitry: lessons from behaving primates. Behav Brain Res 194:119–128

    Article  PubMed  Google Scholar 

  • Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 120:2040–2054

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O (1998) Neural systems for control of voluntary action–a hypothesis. Adv Biophys 35:81–102

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  CAS  PubMed  Google Scholar 

  • Joshua M, Medina JF, Lisberger SG (2013) Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J Neurosci 33:6633–6647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2003) Sensorimotor transformations in cortical motor areas. Neurosci Res 46:1–10

    Article  PubMed  Google Scholar 

  • Kalaska JF (2009) From intention to action: motor cortex and the control of reaching movements. Adv Exp Med Biol 629:139–178

    Article  PubMed  Google Scholar 

  • Kuypers HG (1987) Some aspects of the organization of the output of the motor cortex. Ciba Found Symp 132:63–82

    CAS  PubMed  Google Scholar 

  • Lee D, Port NL, Kruse W, Georgopoulos AP (1998) Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci 18:1161–1170

    CAS  PubMed  Google Scholar 

  • Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW (2011) Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat Neurosci 14:1150–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter R, Lemon RN (1993) Corticospinal function and voluntary movement. Calrendon Press, Oxford

    Google Scholar 

  • Prut Y, Fetz EE (1999) Primate spinal interneurons show pre-movement instructed delay activity. Nature 401:590–594

    Article  CAS  PubMed  Google Scholar 

  • Sabes PN (2011) Sensory integration for reaching: models of optimality in the context of behavior and the underlying neural circuits. Prog Brain Res 191:195–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz AB (2007) Useful signals from motor cortex. J Physiol 579:581–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three- dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927

    CAS  PubMed  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532–546

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77:826–852

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, Cambridge, MA. xvii, p 575

    Google Scholar 

  • Shah A, Fagg AH, Barto AG (2004) Cortical involvement in the recruitment of wrist muscles. J Neurophysiol 91:2445–2456

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima K, Sakai H (1982) Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J Hirnforsch 23:257–269

    CAS  PubMed  Google Scholar 

  • Zach N, Inbar D, Grinvald Y, Bergman H, Vaadia E (2008) Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J Neurosci 28:9545–9556

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifat Prut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Prut, Y. (2014). Coordinate Transformations, Role of Spinal Cord in. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_637-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_637-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics