Skip to main content

Olfactory Cortical Associative Memory Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 199 Accesses

Synonyms

Autoassociative networks; Heteroassociative networks; Olfactory cortex; Piriform cortex

Definition

The olfactory provides an ideal system to explore the proprieties of associative networks, like storage and retrieval of memory patterns, for a number of reasons: its principal cells share many of the fundamental proprieties with associative networks; the system is only one synapse away from its main sensory input, facilitating experimental manipulation in animals; and the olfactory cortex shares many similarities with other well-known associative systems of learning and memory, like the hippocampus.

Detailed Description

Associative Networks

Associative networks are among the most fundamental group of neural networks in the brain, enabling the storage, retrieval, and association of complex patterns of neuronal activation. These features, for instance, provide the brain the ability to correlate independent events, reconstruct previously learned patterns from fragmented or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50:303–304

    Article  PubMed  CAS  Google Scholar 

  • Ambros-Ingerson J, Granger R, Lynch G (1990) Simulation of paleocortex performs hierarchical clustering. Science 247:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Barkai E (2005) Dynamics of learning-induced cellular modifications in the cortex. Biol Cybern 92:360–366

    Article  PubMed  Google Scholar 

  • Barkai E, Hasselmo ME (1994) Modulation of the input/output function of rat piriform cortex pyramidal cells. J Neurophysiol 72:644–658

    PubMed  CAS  Google Scholar 

  • Barkai E, Hasselmo MH (1997) Acetylcholine and associative memory in the piriform cortex. Mol Neurobiol 15:17–29

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Brashear HR, Zaborszky L, Heimer L (1986) Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17:439–451

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • de Almeida L, Idiart M, Linster C (2013) A model of cholinergic modulation in olfactory bulb and piriform cortex. J Neurophysiol 109:1360–1377

    Article  PubMed  PubMed Central  Google Scholar 

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Sense 26:551–576

    Article  CAS  Google Scholar 

  • Haberly LB, Bower JM (1989) Olfactory cortex: model circuit for study of associative memory? Trends Neurosci 12:258–264

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB, Shepherd GM (1973) Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol 36:789–802

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Barkai E (1995) Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J Neurosci 15:6592–6604

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67:1222–1229

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Wilson MA, Anderson BP, Bower JM (1990) Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harb Symp Quant Biol 55:599–610

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Anderson BP, Bower JM (1992) Cholinergic modulation of cortical associative memory function. J Neurophysiol 67:1230–1246

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77:3326–3339

    PubMed  CAS  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Isaacson JS (2010) Odor representations in mammalian cortical circuits. Curr Opin Neurobiol 20:328–331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jensen O, Idiart MA, Lisman JE (1996) Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learn Mem 3:243–256

    Article  PubMed  CAS  Google Scholar 

  • Johnson DM, Illig KR, Behan M, Haberly LB (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J Neurosci Off J Soc Neurosci 20:6974–6982

    CAS  Google Scholar 

  • Liljenstrom H, Hasselmo ME (1995) Cholinergic modulation of cortical oscillatory dynamics. J Neurophysiol 74:288–297

    PubMed  CAS  Google Scholar 

  • Linster C, Hasselmo ME (2001) Neuromodulation and the functional dynamics of piriform cortex. Chem Senses 26:585–594

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Maloney M, Patil M, Hasselmo ME (2003) Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex. Neurobiol Learn Mem 80:302–314

    Article  PubMed  CAS  Google Scholar 

  • Linster C, Menon AV, Singh CY, Wilson DA (2009) Odor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex. Learn Mem 16:452–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262:23–81

    Article  PubMed  CAS  Google Scholar 

  • Patil MM, Linster C, Lubenov E, Hasselmo ME (1998) Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J Neurophysiol 80:2467–2474

    PubMed  CAS  Google Scholar 

  • Poo C, Isaacson JS (2009) Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62:850–861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Treves A (1994) Neural networks in the brain involved in memory and recall. Prog Brain Res 102:335–341

    Article  PubMed  CAS  Google Scholar 

  • Rolls E, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Schoenbaum G, Eichenbaum H (1995) Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J Neurophysiol 74:733–750

    PubMed  CAS  Google Scholar 

  • Shipley MT, Geinisman Y (1984) Anatomical evidence for convergence of olfactory, gustatory, and visceral afferent pathways in mouse cerebral cortex. Brain Res Bull 12:221–226

    Article  PubMed  CAS  Google Scholar 

  • Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR (2011) Distinct representations of olfactory information in different cortical centres. Nature 472:213–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stokes CC, Isaacson JS (2010) From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67:452–465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tseng GF, Haberly LB (1989) Deep neurons in piriform cortex. II. Membrane properties that underlie unusual synaptic responses. J Neurophysiol 62:386–400

    PubMed  CAS  Google Scholar 

  • Williams SH, Constanti A (1988) A quantitative study of the effects of some muscarinic antagonists on the guinea-pig olfactory cortex slice. Br J Pharmacol 93:855–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson DA (2001) Scopolamine enhances generalization between odor representations in rat olfactory cortex. Learn Mem 8:279–285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zaborszky L, Carlsen J, Brashear HR, Heimer L (1986) Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J Comp Neurol 243:488–509

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licurgo de Almeida Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

de Almeida, L. (2013). Olfactory Cortical Associative Memory Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_618-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_618-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics