Skip to main content

Gamma Rhythm, Neural Population Models of the

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baird B (1986) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. Physica D 22(1–3):150–175

    Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    CAS  PubMed  Google Scholar 

  • Başar E (2013) A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 90(2):99–117

    PubMed  Google Scholar 

  • Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. In: Neuper C, Klimesch W (eds) Event-Related Dynamics of Brain Oscillations Progress in Brain Research, vol 159. Elsevier, Amsterdam, pp 179–196

    Google Scholar 

  • Berens P et al (2008) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2

    PubMed Central  PubMed  Google Scholar 

  • Bojak I, Liley DTJ (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E 71(4 Pt 1):041902

    CAS  Google Scholar 

  • Bojak I, Liley DTJ (2007) Self-organized 40 Hz synchronization in a physiological theory of EEG. Neurocomputing 70(10–12):2085–2090

    Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 50(1–2):19–24

    CAS  PubMed  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366(6451):153–156

    CAS  PubMed  Google Scholar 

  • Brindley GS, Craggs MD (1972) The electrical activity in the motor cortex that accompanies voluntary movement. J Physiol 223(1):28P–29P

    CAS  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90(1):415–430

    PubMed  Google Scholar 

  • Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5(4):504–510

    PubMed  Google Scholar 

  • Campbell S, Wang DL (1996) Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators. IEEE Trans Neural Netw 7(3):541–554

    CAS  PubMed  Google Scholar 

  • Castelo-Branco M, Neuenschwander S, Singer W (1998) Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci 18(16):6395–6410

    CAS  PubMed  Google Scholar 

  • Chapman CL, Wright JJ, Bourke PD (2002) Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex. J Math Biol 45(1):57–78

    PubMed  Google Scholar 

  • Crone NE, Hao L (2002) The functional significance of event-related spectral changes (ERD/ERS) from the perspective of electrocorticography. In: Reisin RC et al (eds) Advances in Clinical Neurophysiology, Supplements to Clinical Neurophysiology, vol 54. Elsevier, Amsterdam, pp 435–442

    Google Scholar 

  • Crone NE, Korzeniewska A, Franaszczuk PJ (2011) Cortical gamma responses: searching high and low. Int J Psychophysiol 79(1):9–15

    PubMed Central  PubMed  Google Scholar 

  • Curio G (2005) Ultrafast EEG activities. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Destexhe A (1994) Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons. Phys Rev E 50(2):1594–1606

    Google Scholar 

  • Dzhala VI, Staley KJ (2004) Mechanisms of fast ripples in the hippocampus. J Neurosci 24(40):8896–8906

    CAS  PubMed  Google Scholar 

  • Engel AK et al (1992) Temporal coding in the visual-cortex – new vistas on integration in the nervous-system. Trends Neurosci 15(6):218–226

    CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716

    CAS  PubMed  Google Scholar 

  • Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118

    CAS  PubMed  Google Scholar 

  • Foster BL, Dastjerdi M, Parvizi J (2012) Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc Natl Acad Sci USA 109(38):15514–15519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman WJ (2003a) A neurobiological theory of meaning in perception part II: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. Int J Bifurc Chaos 13(9):2513–2535

    Google Scholar 

  • Freeman WJ (2003b) A neurobiological theory of meaning in perception part I: information and meaning in nonconvergent and nonlocal brain dynamics. Int J Bifurc Chaos 13(9):2493–2511

    Google Scholar 

  • Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception part IV: multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13(10):2857–2866

    Google Scholar 

  • Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception part V: multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13(10):2867–2887

    Google Scholar 

  • Freeman WJ, Gaál G, Jorsten R (2003) A neurobiological theory of meaning in perception part III: multiple cortical areas synchronize without loss of local autonomy. Int J Bifurc Chaos 13(10):2845–2856

    Google Scholar 

  • Frien A et al (1994) Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport 5(17):2273–2277

    CAS  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    PubMed  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    CAS  PubMed  Google Scholar 

  • Fries P et al (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563

    CAS  PubMed  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7):309–316

    CAS  PubMed  Google Scholar 

  • Fries P, Scheeringa R, Oostenveld R (2008) Finding gamma. Neuron 58(3):303–305

    CAS  PubMed  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78(4):2643–2647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gollo LL, Mirasso C, Villa AEP (2010) Dynamic control for synchronization of separated cortical areas through thalamic relay. Neuroimage 52(3):947–955

    PubMed  Google Scholar 

  • Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5(4):550–569

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86(5):1698–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray CM et al (1989) Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    CAS  PubMed  Google Scholar 

  • Gregoriou GG et al (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931):1207–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gross J et al (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossberg S, Somers D (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception. Neural Netw 4(4):453–466

    Google Scholar 

  • Hasenstaub A et al (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47(3):423–435

    CAS  PubMed  Google Scholar 

  • Havenith MN et al (2009) Measuring sub-millisecond delays in spiking activity with millisecond time-bins. Neurosci Lett 450(3):296–300

    CAS  PubMed  Google Scholar 

  • Hirakura Y et al (1996) Dynamic linking among neural oscillators leads to flexible pattern recognition with figure-ground separation. Neural Netw 9(2):189–209

    Google Scholar 

  • Horn D, Sagi D, Usher M (1991) Segmentation, binding, and illusory conjunctions. Neural Comput 3(4):510–525

    Google Scholar 

  • Hughes JR (2008) Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav 13(1):25–31

    PubMed  Google Scholar 

  • Jasper HH, Andrews HL (1938) Electroencephalography. III. Normal differentiation of occipital and precentral regions in man. Arch Neurol Psychiat 39:96–115

    Google Scholar 

  • Kohling R, Staley K (2011) Network mechanisms for fast ripple activity in epileptic tissue. Epilepsy Res 97(3):318–323

    PubMed Central  PubMed  Google Scholar 

  • König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Comput 3(2):155–166

    Google Scholar 

  • König P, Janosch B, Schillen TB (1992) Stimulus-dependent assembly formation of oscillatory responses: III. Learning. Neural Comput 4(5):666–681

    Google Scholar 

  • König P et al (1995) How precise is neuronal synchronization? Neural Comput 7(3):469–485

    PubMed  Google Scholar 

  • Lachaux J-P et al (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28(12):1368–1375

    PubMed  Google Scholar 

  • Lee K–H et al (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41(1):57–78

    PubMed  Google Scholar 

  • Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Network Comput Neural Syst 13(1):67–113

    Google Scholar 

  • Lima B et al (2010) Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb Cortex 20(7):1556–1573

    PubMed Central  PubMed  Google Scholar 

  • Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    CAS  PubMed  Google Scholar 

  • Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol Cybern 67(3):233–242

    PubMed  Google Scholar 

  • Manning JR et al (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–13620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller KJ et al (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27(9):2424–2432

    CAS  PubMed  Google Scholar 

  • Mukamel R et al (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309(5736):951–954

    CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD (2013) High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci 7:138

    PubMed Central  PubMed  Google Scholar 

  • Muthukumaraswamy SD et al (2010) Visual gamma oscillations and evoked responses: variability, repeatability and structural MRI correlates. Neuroimage 49(4):3349–3357

    PubMed  Google Scholar 

  • Niebur E, Hsiao SS, Johnson KO (2002) Synchrony: a neuronal mechanism for attentional selection? Curr Opin Neurobiol 12(2):190–194

    CAS  PubMed  Google Scholar 

  • Niessing J et al (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951

    CAS  PubMed  Google Scholar 

  • Nikolic D (2007) Non-parametric detection of temporal order across pairwise measurements of time delays. J Comput Neurosci 22(1):5–19

    PubMed  Google Scholar 

  • Nir Y et al (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17(15):1275–1285

    CAS  PubMed  Google Scholar 

  • Ossandon T et al (2011) Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J Neurosci 31(41):14521–14530

    CAS  PubMed  Google Scholar 

  • Pesaran B et al (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5(8):805–811

    CAS  PubMed  Google Scholar 

  • Peters A (2002) Examining neocortical circuits: some background and facts. J Neurocytol 31(3–5):183–193

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Cooper R (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol 38(1):93–96

    CAS  PubMed  Google Scholar 

  • Ray S, Maunsell JH (2010) Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67(5):885–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9(4):e1000610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray S, Ni AM, Maunsell JH (2013) Strength of gamma rhythm depends on normalization. PLoS Biol 11(2):e1001477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rennie CJ, Wright JJ, Robinson PA (2000) Mechanisms of cortical electrical activity and emergence of gamma rhythm. J Theor Biol 205(1):17–35

    CAS  PubMed  Google Scholar 

  • Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E 72(1):011904

    CAS  Google Scholar 

  • Robinson PA (2006) Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys Rev E 73(4):041904

    CAS  Google Scholar 

  • Robinson PA, Wright JJ, Rennie CJ (1998) Synchronous oscillations in the cerebral cortex. Phys Rev E 57(4):4578–4588

    CAS  Google Scholar 

  • Robinson PA et al (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63(2):021903

    CAS  Google Scholar 

  • Rodriguez E et al (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):430–433

    CAS  PubMed  Google Scholar 

  • Roelfsema PR et al (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161

    CAS  PubMed  Google Scholar 

  • Sabatini SP, Solari F, Secchi L (2004) A continuum-field model of visual cortex stimulus-driven behaviour: emergent oscillations and coherence fields. Neurocomputing 57:411–433

    Google Scholar 

  • Sabatini SP, Solari F, Secchi L (2005) Emergence of oscillations and spatio-temporal coherence states in a continuum-model of excitatory and inhibitory neurons. Biosystems 79(1–3):101–108

    PubMed  Google Scholar 

  • Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses: II. Desynchronization. Neural Comput 3(2):167–178

    Google Scholar 

  • Schillen TB, König P (1994) Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol Cybern 70(5):397–405

    CAS  PubMed  Google Scholar 

  • Schneider G, Nikolic D (2006) Detection and assessment of near-zero delays in neuronal spiking activity. J Neurosci Methods 152(1–2):97–106

    CAS  PubMed  Google Scholar 

  • Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308(5718):111–113

    CAS  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8(7):575–592

    CAS  PubMed  Google Scholar 

  • Schroeder CE et al (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85(3):1322–1327

    CAS  PubMed  Google Scholar 

  • Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex. Biol Cybern 64(1):77–85

    CAS  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1): 49–65, 111–125

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  • Spydell JD, Ford MR, Sheer DE (1979) Task dependent cerebral lateralization of the 40 Hertz EEG rhythm. Psychophysiol 16(4):347–350

    CAS  Google Scholar 

  • Steyn-Ross ML et al (2009) Modeling brain activation patterns for the default and cognitive states. Neuroimage 45(2):298–311

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    PubMed  Google Scholar 

  • Tallon-Baudry C et al (1997) Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17(2):722–734

    CAS  PubMed  Google Scholar 

  • Theyel BB, Llano DA, Sherman M (2010) The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci 13(1):84–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ et al (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17

    PubMed Central  PubMed  Google Scholar 

  • van Pelt S, Boomsma DI, Fries P (2012) Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced gamma-band synchronization. J Neurosci 32(10):3388–3392

    PubMed  Google Scholar 

  • Varela F et al (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    CAS  PubMed  Google Scholar 

  • Vicente R et al (2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci USA 105(44):17157–17162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viriyopase A et al (2012) When long-range zero-Lag synchronization is feasible in cortical networks. Front Comput Neurosci 6:49

    PubMed Central  PubMed  Google Scholar 

  • von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54(1):29–40

    PubMed  Google Scholar 

  • Wang DL (1995) Emergent synchrony in locally coupled neural oscillators. IEEE Trans Neural Netw 6(4):941–948

    CAS  PubMed  Google Scholar 

  • Whittington MA et al (2000) Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 86(2):171–190

    CAS  PubMed  Google Scholar 

  • Womelsdorf T et al (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612

    CAS  PubMed  Google Scholar 

  • Wright JJ (1997) EEG simulation: variation of spectral envelope, pulse synchrony and ≈40 Hz oscillation. Biol Cybern 76(3):181–194

    CAS  PubMed  Google Scholar 

  • Wright JJ (1999) Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex. Biol Cybern 81(2):131–147

    CAS  PubMed  Google Scholar 

  • Wright JJ (2009) Generation and control of cortical gamma: findings from simulation at two scales. Neural Netw 22(4):373–384

    CAS  PubMed  Google Scholar 

  • Wright JJ (2011) Attractor dynamics and thermodynamic analogies in the cerebral cortex: synchronous oscillation, the background EEG, and the regulation of attention. Bull Math Biol 73(2):436–457

    CAS  PubMed  Google Scholar 

  • Wright JJ, Liley DTJ (1995) Simulation of electrocortical waves. Biol Cybern 72(4):347–356

    CAS  PubMed  Google Scholar 

  • Wright JJ, Bourke PD, Chapman CL (2000) Synchronous oscillation in the cerebral cortex and object coherence: simulation of basic electrophysiological findings. Biol Cybern 83(4):341–353

    CAS  PubMed  Google Scholar 

  • Wright JJ et al (2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63(1–3):71–88

    CAS  PubMed  Google Scholar 

  • Wright JJ et al (2003) Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacol 28(S1):S80–S93

    Google Scholar 

  • Xing D et al (2012) Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J Neurosci 32(40):13873–80a

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi Y, Shimizu H (1994) Pattern recognition with figure-ground separation by generation of coherent oscillations. Neural Netw 7(1):49–63

    Google Scholar 

  • Zhadin MN (1984) Rhythmic processes in the cerebral cortex. J Theor Biol 108(4):565–595

    CAS  PubMed  Google Scholar 

  • Zhadin MN (1994) Formation of rhythmic processes in the bio-electrical activity of the cerebral cortex. Biophysics 39(1):133–150

    Google Scholar 

  • Zhadin MN (1996) Rhythmicity in the EEG and global stabilization of the average level of excitation in the cerebral cortex. Behav Brain Sci 19(02):309–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Bojak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bojak, I. (2014). Gamma Rhythm, Neural Population Models of the. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics