Skip to main content

Computational Olfaction

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 236 Accesses

Definition

In natural environments, airborne chemical stimuli are distributed unpredictably in time and space, and odorants from innumerable sources intermix freely. The olfactory system must perform computations to detect potential signals of interest within these noisy signals, extract these signals, form representations, compare these to those of previously experienced, differentiate relevant from irrelevant stimuli, and cue an appropriate response. Computational modeling suggests that subnetworks of the olfactory system may be dedicated to perform specific computations underlying these functions.

Detailed Description

Neural Networks Involved in Olfactory Computation

Computational models of the olfactory system have contributed immensely to the framing of experimental problems and the construction of complex hypotheses regarding its function. Computational models from detailed biophysical to large-scale simple neuron models have proposed how olfactory networks compute the functions...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ambros-Ingerson J, Granger R, Lynch G (1990) Simulation of paleocortex performs hierarchical clustering. Science 247:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678–2691

    Article  PubMed  Google Scholar 

  • Bathellier B, Carleton A, Gerstner W (2008) Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comput 20:2973–3002

    Article  PubMed  Google Scholar 

  • Cleland TA, Linster C (2002) How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behav Neurosci 116:212–221

    Article  PubMed  Google Scholar 

  • Cleland TA, Sethupathy P (2004) Non-topographical contrast enhancement disambiguates high-dimensional odor representations. Soc Neurosci Abstr 531.2

    Google Scholar 

  • Cleland TA, Johnson BA, Leon M, Linster C (2007) Relational representation in the olfactory system. Proc Natl Acad Sci U S A 104:1953–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David FO, Hugues E, Cenier T, Fourcaud-Trocme N, Buonviso N (2009) Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb. PLoS Comput Biol 5:e1000551

    Article  PubMed Central  PubMed  Google Scholar 

  • de Almeida L, Idiart M, Linster C (2013) A model of cholinergic modulation in olfactory bulb and piriform cortex. J Neurophysiol 109:1360–1377

    Article  PubMed Central  PubMed  Google Scholar 

  • Erdi P, Grobler T, Barna G, Kaski K (1993) Dynamics of the olfactory bulb: bifurcations, learning, and memory. Biol Cybern 69:57–66

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139–150

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 26:551–576

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB, Bower JM (1989) Olfactory cortex: model circuit for study of associative memory? Trends Neurosci 12:258–264

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Wilson MA, Anderson BP, Bower JM (1990) Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harb Symp Quant Biol 55:599–610

    Article  CAS  PubMed  Google Scholar 

  • Hendin O, Horn D, Tsodyks MV (1998) Associative memory and segmentation in an oscillatory neural model of the olfactory bulb. J Comput Neurosci 5:157–169

    Article  CAS  PubMed  Google Scholar 

  • Kay LM (2003) Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. J Integr Neurosci 2:31–44

    Article  PubMed  Google Scholar 

  • Lagier S, Carleton A, Lledo PM (2004) Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J Neurosci 24:4382–4392

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hopfield JJ (1989) Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61:379–392

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Cleland TA (2001) How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Cleland TA (2003) Decorrelation of odor representations via spike timing-dependent plasticity. Front Comput Neurosci 4:157

    Google Scholar 

  • Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Hasselmo M (1997) Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behav Brain Res 84:117–127

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Hasselmo ME (1999) Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb. Physiol Behav 66:497–502

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Smith BH (1997) A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav Brain Res 87:1–14

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262:23–81

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Gervais R, Hugues E, Messaoudi B, Ravel N (2004) Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition? J Neurosci 24:389–397

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  • Ravel N, Chabaud P, Martin C, Gaveau V, Hugues E, Tallon-Baudry C, Bertrand O, Gervais R (2003) Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60–90 Hz) and beta (15–40 Hz) bands in the rat olfactory bulb. Eur J Neurosci 17:350–358

    Article  PubMed  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  CAS  PubMed  Google Scholar 

  • van Drongelen W, Holley A, Doving KB (1978) Convergence in the olfactory system: quantitative aspects of odour sensitivity. J Theor Biol 71:39–48

    Article  PubMed  Google Scholar 

  • Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci U S A 92:3371–3375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C (2010) Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 32:458–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Linster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Linster, C. (2014). Computational Olfaction. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_609-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_609-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics