Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Local Field Potential and Movement Disorders

  • Annaelle Devergnas
  • Thomas Wichmann
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_551-1

Definition

Local field potentials (LFPs) represent the sum of low-frequency electrical activities in the extracellular medium close to a recording electrode. They predominately reflect field changes related to the flow of electrical current at synapses in the vicinity of the electrode, although other tissue components (neuronal spiking, glia potentials) may also contribute. The amplitude of LFPs is affected by the synchrony of dendritic potentials and by the geometry of dendritic arbors. Most of the electrical events that contribute to LFP signal occur within 200–400 μm of the tip of the electrode (Katzner et al. 2009; Xing et al. 2009).

LFPs can be recorded with microelectrodes, usually referenced against an electrode outside of the brain, or with macroelectrodes, usually as differential recordings between two poles of the same electrode. Because most of the spectral power of LFPs is found at relatively low frequencies (<300 Hz), LFP signals are often low-pass filtered (with a filter...

Keywords

Deep Brain Stimulation Essential Tremor Huntington Disease Tourette Syndrome Local Field Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

This review entry was supported by grants from the National Institute of Health and National Institute of Neurological Disorders and Stroke R01-NS054976 and P50-NS071669 as well as an infrastructure grant from the NIH to the Yerkes Center (P51-RR165, now P51-OD11132).

References

  1. Air EL, Ryapolova-Webb E, de Hemptinne C, Ostrem JL, Galifianakis NB, Larson PS, Chang EF, Starr PA (2012) Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor. Clin Neurophysiol 123:2232–2238PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673PubMedCrossRefGoogle Scholar
  3. Albin RL, Mink JW (2006) Recent advances in Tourette syndrome research. Trends Neurosci 29:175–182PubMedCrossRefGoogle Scholar
  4. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  5. Alonso-Frech F, Zamarbide I, Alegre M, Rodriguez-Oroz MC, Guridi J, Manrique M, Valencia M, Artieda J, Obeso JA (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757PubMedCrossRefGoogle Scholar
  6. Avila I, Parr-Brownlie LC, Brazhnik E, Castaneda E, Bergstrom DA, Walters JR (2009) Beta frequency synchronization in basal ganglia output during rest and walk in a hemiparkinsonian rat. Exp Neurol 221:307–319PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531PubMedCrossRefGoogle Scholar
  8. Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P (2008) Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 109:130–132PubMedCrossRefGoogle Scholar
  9. Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B (2009) The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 215:20–28PubMedCrossRefGoogle Scholar
  10. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMedGoogle Scholar
  11. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V, Brown P (2002) Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–1246PubMedCrossRefGoogle Scholar
  12. Chen CC, Kuhn AA, Hoffmann KT, Kupsch A, Schneider GH, Trottenberg T, Krauss JK, Wohrle JC, Bardinet E, Yelnik J, Brown P (2006a) Oscillatory pallidal local field potential activity correlates with involuntary EMG in dystonia. Neurology 66:418–420PubMedCrossRefGoogle Scholar
  13. Chen CC, Kuhn AA, Trottenberg T, Kupsch A, Schneider GH, Brown P (2006b) Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3–12 Hz in patients with dystonia. Exp Neurol 202:480–486PubMedCrossRefGoogle Scholar
  14. Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K, Yousry T, Hariz MI, Brown P (2006c) Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol 198:214–221PubMedCrossRefGoogle Scholar
  15. Chen CC, Litvak V, Gilbertson T, Kuhn A, Lu CS, Lee ST, Tsai CH, Tisch S, Limousin P, Hariz M, Brown P (2007) Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp Neurol 205:214–221PubMedCrossRefGoogle Scholar
  16. Chen CC, Lin WY, Chan HL, Hsu YT, Tu PH, Lee ST, Chiou SM, Tsai CH, Lu CS, Brown P (2011) Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Exp Neurol 231:91–96PubMedCrossRefGoogle Scholar
  17. Darbin O, Wichmann T (2008) Effects of striatal GABAA-receptor blockade on striatal and cortical activity in monkeys. J Neurophysiol 99:1294–1305PubMedCrossRefGoogle Scholar
  18. Del Sorbo F, Albanese A (2008) Levodopa-induced dyskinesias and their management. J Neurol 255(Suppl 4):32–41PubMedCrossRefGoogle Scholar
  19. Devergnas A, Sanders TH, Clements M, Wichmann T (2012) Classification of the severity of parkinsonism based on wavelet packet transform analysis of electroencephalographic and subthalamic local field potential recordings. Poster presented at the Annual Meeting. Society for Neuroscience. New Orleans, 13–17Google Scholar
  20. Do J, Kim JI, Bakes J, Lee K, Kaang BK (2012) Functional roles of neurotransmitters and neuromodulators in the dorsal striatum. Learn Mem 20:21–28PubMedCrossRefGoogle Scholar
  21. Eusebio A, Chen CC, Lu CS, Lee ST, Tsai CH, Limousin P, Hariz M, Brown P (2008) Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Exp Neurol 209:125–130PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fahn S (2000) The spectrum of levodopa-induced dyskinesias. Ann Neurol 47:S2–S9; discussion S9–S11PubMedCrossRefGoogle Scholar
  23. Foffani G, Ardolino G, Meda B, Egidi M, Rampini P, Caputo E, Baselli G, Priori A (2005) Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. J Neurol Neurosurg Psychiatry 76:426–428PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fridley J, Thomas JG, Navarro JC, Yoshor D (2012) Brain stimulation for the treatment of epilepsy. Neurosurg Focus 32:E13PubMedCrossRefGoogle Scholar
  25. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gernert M, Richter A, Rundfeldt C, Loscher W (1998) Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia. Mov Disord 13:509–521PubMedCrossRefGoogle Scholar
  27. Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H (2004) Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci 24:6003–6010PubMedCrossRefGoogle Scholar
  28. Groiss SJ, Elben S, Reck C, Voges J, Wojtecki L, Schnitzler A (2011) Local field potential oscillations of the globus pallidus in Huntington’s disease. Mov Disord 26:2577–2578PubMedCrossRefGoogle Scholar
  29. Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33:4804–4814PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hebb MO, Garcia R, Gaudet P, Mendez IM (2006) Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery 58:E383; discussion E383PubMedCrossRefGoogle Scholar
  31. Hong SL, Cossyleon D, Hussain WA, Walker LJ, Barton SJ, Rebec GV (2012) Dysfunctional behavioral modulation of corticostriatal communication in the R6/2 mouse model of Huntington’s disease. PLoS One 7:e47026PubMedCrossRefPubMedCentralGoogle Scholar
  32. Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379PubMedCrossRefGoogle Scholar
  33. Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 102:13307–13312PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kane A, Hutchison WD, Hodaie M, Lozano AM, Dostrovsky JO (2009) Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor. Exp Neurol 217:171–176PubMedCrossRefGoogle Scholar
  35. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kuhn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider GH, Yarrow K, Brown P (2004) Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735–746PubMedCrossRefGoogle Scholar
  37. Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, Vandenberghe W, Nuttin B, Brown P (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28:6165–6173PubMedCrossRefGoogle Scholar
  38. Kuhn AA, Tsui A, Aziz T, Ray N, Brucke C, Kupsch A, Schneider GH, Brown P (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215:380–387PubMedCrossRefGoogle Scholar
  39. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125:1196–1209PubMedCrossRefGoogle Scholar
  40. Little S, Pogosyan A, Kuhn AA, Brown P (2012) beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 236:383–388PubMedCrossRefPubMedCentralGoogle Scholar
  41. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, Fitzgerald J, Green AL, Aziz TZ, Brown P (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457. doi:10.1002/ana.23951PubMedPubMedCentralGoogle Scholar
  42. Liu X, Griffin IC, Parkin SG, Miall RC, Rowe JG, Gregory RP, Scott RB, Aziz TZ, Stein JF (2002) Involvement of the medial pallidum in focal myoclonic dystonia: A clinical and neurophysiological case study. Mov Disord 17:346–353PubMedCrossRefGoogle Scholar
  43. Liu X, Yianni J, Wang S, Bain PG, Stein JF, Aziz TZ (2006) Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia. Exp Neurol 198:204–213PubMedCrossRefGoogle Scholar
  44. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227PubMedCrossRefPubMedCentralGoogle Scholar
  45. Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407PubMedCrossRefGoogle Scholar
  46. Maling N, Hashemiyoon R, Foote KD, Okun MS, Sanchez JC (2012) Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette’s syndrome. PLoS One 7:e44215PubMedCrossRefPubMedCentralGoogle Scholar
  47. Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, Magill PJ (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28:4795–4806PubMedCrossRefGoogle Scholar
  48. Marceglia S, Servello D, Foffani G, Porta M, Sassi M, Mrakic-Sposta S, Rosa M, Barbieri S, Priori A (2010) Thalamic single-unit and local field potential activity in Tourette syndrome. Mov Disord 25:300–308PubMedCrossRefGoogle Scholar
  49. Marsden CD, Meldrum BS, Pycock C, Tarsy D (1975) Focal myoclonus produced by injection of picrotoxin into the caudate nucleus of the rat. J Physiol 246:96PPubMedGoogle Scholar
  50. Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P (2000) Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain 123(Pt 7):1459–1470PubMedCrossRefGoogle Scholar
  51. McCairn KW, Bronfeld M, Belelovsky K, Bar-Gad I (2009) The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain 132:2125–2138PubMedCrossRefGoogle Scholar
  52. McCairn KW, Iriki A, Isoda M (2013) Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition. J Neurosci 33:697–708PubMedCrossRefGoogle Scholar
  53. Miller BR, Walker AG, Barton SJ, Rebec GV (2011) Dysregulated neuronal activity patterns implicate corticostriatal circuit dysfunction in multiple rodent models of Huntington’s disease. Front Syst Neurosci 5:26PubMedCrossRefPubMedCentralGoogle Scholar
  54. Miyagi Y, Okamoto T, Morioka T, Tobimatsu S, Nakanishi Y, Aihara K, Hashiguchi K, Murakami N, Yoshida F, Samura K, Nagata S, Sasaki T (2009) Spectral analysis of field potential recordings by deep brain stimulation electrode for localization of subthalamic nucleus in patients with Parkinson’s disease. Stereotact Funct Neurosurg 87:211–218PubMedCrossRefGoogle Scholar
  55. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, Hutchison WD, Lozano AM (2004) Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol 56:290–294PubMedCrossRefGoogle Scholar
  56. Muramatsu S, Yoshida M, Nakamura S (1990) Electrophysiological study of dyskinesia produced by microinjection of picrotoxin into the striatum of the rat. Neurosci Res 7:369–380PubMedCrossRefGoogle Scholar
  57. Nakamura S, Muramatsu S, Yoshida M (1990) Role of the basal ganglia in manifestation of rhythmical jaw movement in rats. Brain Res 535:335–338PubMedCrossRefGoogle Scholar
  58. Neufeld MY, Blumen S, Aitkin I, Parmet Y, Korczyn AD (1994) EEG frequency analysis in demented and nondemented parkinsonian patients. Dementia 5:23–28PubMedGoogle Scholar
  59. Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682PubMedCrossRefGoogle Scholar
  60. Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, Locatelli M, Moxon KA, Villani RM (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189:369–379PubMedCrossRefGoogle Scholar
  61. Priori A, Foffani G, Rossi L, Marceglia S (2013a) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86PubMedCrossRefGoogle Scholar
  62. Priori A, Giannicola G, Rosa M, Marceglia S, Servello D, Sassi M, Porta M (2013b) Deep brain electrophysiological recordings provide clues to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev 37:1063–1068PubMedCrossRefGoogle Scholar
  63. Raethjen J, Deuschl G (2012) The oscillating central network of essential tremor. Clin Neurophysiol 123:61–64PubMedCrossRefGoogle Scholar
  64. Ray NJ, Jenkinson N, Wang S, Holland P, Brittain JS, Joint C, Stein JF, Aziz T (2008) Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213:108–113PubMedCrossRefGoogle Scholar
  65. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–384PubMedCrossRefGoogle Scholar
  66. Santaniello S, Fiengo G, Glielmo L, Grill WM (2011) Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans Neural Syst Rehabil Eng 19:15–24PubMedCrossRefGoogle Scholar
  67. Sebban C, Zhang XQ, Tesolin-Decros B, Millan MJ, Spedding M (1999) Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission. Br J Pharmacol 128:1045–1054PubMedCrossRefPubMedCentralGoogle Scholar
  68. Serizawa K, Kamei S, Morita A, Hara M, Mizutani T, Yoshihashi H, Yamaguchi M, Takeshita J, Hirayanagi K (2008) Comparison of quantitative EEGs between Parkinson disease and age-adjusted normal controls. J Clin Neurophysiol 25:361–366PubMedCrossRefGoogle Scholar
  69. Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21:1413–1422PubMedCrossRefGoogle Scholar
  70. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P (2003) Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 126:2597–2608PubMedCrossRefGoogle Scholar
  71. Soikkeli R, Partanen J, Soininen H, Paakkonen A, Riekkinen P Sr (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 79:159–165PubMedCrossRefGoogle Scholar
  72. Starr PA, Ostrem JL (2013) Commentary on “Adaptive deep brain stimulation in advanced Parkinson disease”. Ann Neurol 74(3):447–448. doi:10.1002/ana.23966PubMedGoogle Scholar
  73. Stein E, Bar-Gad I (2013) beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245:52–59PubMedCrossRefGoogle Scholar
  74. Tang JK, Mahant N, Cunic D, Chen R, Moro E, Lang AE, Lozano AM, Hutchison WD, Dostrovsky JO (2007) Changes in cortical and pallidal oscillatory activity during the execution of a sensory trick in patients with cervical dystonia. Exp Neurol 204:845–848PubMedCrossRefGoogle Scholar
  75. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976PubMedGoogle Scholar
  76. Walker FO (2007) Huntington’s disease. Lancet 369:218–228PubMedCrossRefGoogle Scholar
  77. Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96:3248–3256PubMedCrossRefGoogle Scholar
  78. Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368PubMedCrossRefGoogle Scholar
  79. Williams D, Tijssen M, Van Bruggen G, Bosch A, Insola A, Di Lazzaro V, Mazzone P, Oliviero A, Quartarone A, Speelman H, Brown P (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569PubMedCrossRefGoogle Scholar
  80. Williams D, Kuhn A, Kupsch A, Tijssen M, van Bruggen G, Speelman H, Hotton G, Loukas C, Brown P (2005) The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus. Eur J Neurosci 21:249–258PubMedCrossRefGoogle Scholar
  81. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197:244–251PubMedCrossRefGoogle Scholar
  82. Worbe Y, Baup N, Grabli D, Chaigneau M, Mounayar S, McCairn K, Feger J, Tremblay L (2009) Behavioral and movement disorders induced by local inhibitory dysfunction in primate striatum. Cereb Cortex 19:1844–1856PubMedCrossRefGoogle Scholar
  83. Worbe Y, Malherbe C, Hartmann A, Pelegrini-Issac M, Messe A, Vidailhet M, Lehericy S, Benali H (2012) Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain 135:1937–1946PubMedCrossRefGoogle Scholar
  84. Worbe Y, Sgambato-Faure V, Epinat J, Chaigneau M, Tande D, Francois C, Feger J, Tremblay L (2013) Towards a primate model of Gilles de la Tourette syndrome: anatomo-behavioural correlation of disorders induced by striatal dysfunction. Cortex 49:1126–1140PubMedCrossRefGoogle Scholar
  85. Xing D, Yeh CI, Shapley RM (2009) Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29:11540–11549PubMedCrossRefPubMedCentralGoogle Scholar
  86. Yoshida M, Nagatsuka Y, Muramatsu S, Niijima K (1991) Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists. Neurosci Res 10:34–51PubMedCrossRefGoogle Scholar
  87. Zaidel A, Bergman H, Ritov Y, Israel Z (2010a) Levodopa and subthalamic deep brain stimulation responses are not congruent. Mov Disord 25:2379–2386PubMedCrossRefGoogle Scholar
  88. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z (2010b) Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 133:2007–2021PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.Department of NeurologyEmory UniversityAtlantaUSA
  3. 3.Udall Center of Excellence in Parkinson’s Disease ResearchEmory UniversityAtlantaUSA