Skip to main content

Local Field Potential, Ephaptic Interactions

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 274 Accesses

Charge transfer across the membrane of all structures in brain matter such as neurons, glial cells, etc. induces the so-called extracellular sinks and sources that, in turn, give rise to an extracellular field, i.e., a spatial gradient of the extracellular voltage (V e ) measured in comparison to a distant reference signal. The physics governing such events are described by Maxwell’s equations. In their simplest form, Maxwell’s equations dictate that V e depends on the transmembrane current amplitude, the impedance of the extracellular medium, and the distance between the location of the ionic flux and the recording (see also entries “Local Field Potentials (LFP)” and “Local Field Potential, Methods of Recording” and (Koch 1999)). V e signals resulting from the activity of the entire cell populations can therefore be recorded via standard recording techniques and have been used for decades to monitor electric processing in the brain (Buzsaki 2002).

From in vivo electrophysiology...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastassiou CA, Montgomery SM, Barahona M, Buzsaki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30:1925–1936

    Article  PubMed  CAS  Google Scholar 

  • Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling in cortical neurons. Nat Neurosci 14:217–223

    Article  PubMed  CAS  Google Scholar 

  • Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol 5:89–108

    Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Google Scholar 

  • Bikson M, Inoue M, Akiyama H et al (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol Lond 557(1):175–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blot A, Barbour B (2014) Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nat Neurosci 17(2):289–295. doi:10.1038/nn.3624. Epub 2014 Jan 12

    Article  PubMed  CAS  Google Scholar 

  • Buffalo EA, Fries P, Landman R et al (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci USA 108(27):11262–11267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  PubMed  CAS  Google Scholar 

  • Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371:89–114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan CY, Hounsgaard J, Nicholson C (1988) Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol 402:751–771

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dalkara T, Krnjevic K, Ropert N, Yim CY (1986) Chemical modulation of ephaptic activation of CA3 hippocampal pyramids. Neuroscience 17:361–370

    Article  PubMed  CAS  Google Scholar 

  • Deans JK, Powell AD, Jefferys JGR (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol Lond 583(2):555–565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK et al (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785

    Article  PubMed  CAS  Google Scholar 

  • Faber DS, Korn H (1998) Single-shot channel activation accounts for duration of inhibitory postsynaptic potentials in a central neuron. Science 208:612–615

    Article  Google Scholar 

  • Faber DS, Korn H (1989) Electrical-field effects – their relevance in central neural networks. Physiol Rev 69(3):821–863

    PubMed  CAS  Google Scholar 

  • Fritsch B, Reis J, Martinowich K et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frohlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84(1):274–280

    PubMed  CAS  Google Scholar 

  • Gold C, Henze DA, Koch C et al (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95(5):3113–3128

    Article  PubMed  CAS  Google Scholar 

  • Henze DA, Borhegyi Z, Csicsvari J et al (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84(1):390–400

    PubMed  CAS  Google Scholar 

  • Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holt GR, Koch C (1998) A critical reexamination of some assumptions and implications of cable theory in neurobiology, Phd thesis. In: Biology. California Institute of Technology, Pasadena

    Google Scholar 

  • Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta-oscillation in Ca1 in-vitro. Neuron 15(5):1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Jefferys JGR (1995) Nonsynaptic modulation of neuronal-activity in the brain – electric currents and extracellular ions. Physiol Rev 75(4):689–723

    PubMed  CAS  Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of ca1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300(5891):448–450

    Article  PubMed  CAS  Google Scholar 

  • Kamondi A, Acsady L, Buzsaki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18(10):3919–3928

    PubMed  CAS  Google Scholar 

  • Katz B, Schmitt OH (1940) Electric interaction between two adjacent nerve fibres. J Physiol Lond 97:471–488

    PubMed  CAS  PubMed Central  Google Scholar 

  • Katz B, Schmitt OH (1942) A note on interaction between nerve fibres. J Physiol Lond 100:369–371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Korn H, Axelrad H (1980) Electrical inhibition of Purkinje cells in the cerebellum of the rat. Proc Natl Acad Sci U S A 77:6244–6247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York

    Google Scholar 

  • Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiat 64:461–467

    Article  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M et al (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  PubMed  CAS  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    Article  PubMed  CAS  Google Scholar 

  • Nelson PG (1966) Interaction between spinal motoneurons of the cat. J Neurophysiol 29:275–287

    PubMed  CAS  Google Scholar 

  • Ozen S, Sirota A, Belluscio MA et al (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30(34):11476–11485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pavlides C, Greenstein YJ, Grudman M et al (1988) Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439(1–2):383–387

    Article  PubMed  CAS  Google Scholar 

  • Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulat 2:215–228

    Article  Google Scholar 

  • Radman T, Su Y, An JH et al (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 27(11):3030–3036

    Article  PubMed  CAS  Google Scholar 

  • Ranck JB Jr (1963a) Specific impedance of rabbit cerebral cortex. Exp Neurol 7:144–152

    Article  PubMed  Google Scholar 

  • Ranck JB Jr (1963b) Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol 7:153–174

    Article  PubMed  Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R et al (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rutishauser U, Ross IB, Mamelak AN et al (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464(7290):903–U116

    Article  PubMed  CAS  Google Scholar 

  • Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Dudek FE, Snow RW et al (1985a) Computer-simulations indicate that electrical-field effects contribute to the shape of the epileptiform field potential. Neuroscience 15(4):947–958

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Dudek FE, Taylor CP et al (1985b) Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience 14(4):1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Turner RW, Richardson TL (1991) Apical dendritic depolarizations and field interactions evoked by stimulation of afferent inputs to rat hippocampal CA1 pyramidal cells. Neuroscience 42:125–135

    Article  PubMed  CAS  Google Scholar 

  • Weiss SA, Faber DS (2010) Field Effects in the CNS Play Functional Roles. Front Neural Circuits 4

    Google Scholar 

  • Weiss SA, McKhann G Jr, Goodman R et al (2013) Field effects and ictal synchronization: insights from in homine observations. Front Hum Neurosci 7, 828

    PubMed  PubMed Central  Google Scholar 

  • Ylinen A, Bragin A, Nadasdy Z et al (1995) Sharp wave-associated high-frequency oscillation (200-Hz) in the intact hippocampus – network and intracellular mechanisms. J Neurosci 15(1):30–46, Part 1

    PubMed  CAS  Google Scholar 

  • Zhang M, Ladas TP, Qiu C, Shivarachan RS, Gonsalez-Reyes LE et al (2014) Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J Neurosci 34(4):1409–1419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Further Reading

  • Holscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17(16):6470–6477

    PubMed  CAS  Google Scholar 

  • Hyman JM, Wyble BP, Goyal V et al (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23(37):11725–11731

    PubMed  CAS  Google Scholar 

  • Korn H, Faber DS (1980) Electrical inhibition of Purkinje-cells in the cerebellum of the Rat. Proc Natl Acad Sci USA Biol Sci 77(10):6244–6247

    Article  CAS  Google Scholar 

  • Korn H, Faber DS (1980) Electrical-field effect interactions in the vertebrate brain. Trends Neurosci 3(1):6–9

    Article  Google Scholar 

  • Weiss SA, Faber DS (2013) Field effects in the CNS play functional roles. Front Hum Neurosci 7, 828

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Adam Shai and Michael Hawrylycz for comments and suggestions as well as the Allen Institute for Brain Science founders, P. G. Allen and J. Allen, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas A. Anastassiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Anastassiou, C.A. (2014). Local Field Potential, Ephaptic Interactions. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_550-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_550-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics