Skip to main content

Embodied Cognition, Dynamic Field Theory of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 208 Accesses

Synonyms

Cognition and control; Neural population models for

Definition

The insight that cognition is grounded in sensorimotor processing and shares many properties with motor control, captured by the notion of “embodied cognition,” has been a starting point for neural process models of cognition. Neural Field models represent spaces relevant to cognition, including physical space, perceptual feature spaces, or movement parameters in activation fields that may receive input from the sensory surfaces and may project onto motor systems. Peaks of activation are units of representation. Their positive levels of activation indicate the instantiation of a representation, while their location specifies metric values along the feature dimensions. By ensuring that peaks are stable states (attractors) of a neural activation dynamics, cognitive processes are endowed with the stability properties required when cognition is linked to sensory and motor processes. Instantiations of cognitive...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  CAS  PubMed  Google Scholar 

  • Bastian A, Riehle A, Erlhagen W, Schöner G (1998) Prior information preshapes the population representation of movement direction in motor cortex. Neuroreports 9:315–319

    Article  CAS  Google Scholar 

  • Bicho E, Mallet P, Schöner G (2000) Target representation on an autonomous vehicle with low-level sensors. Int J Robotics Res 19:424–447

    Article  Google Scholar 

  • Cisek P (2006) Integrated neural processes for defining potential actions and deciding between them: a computational model. J Neurosci 26(38):9761–9770

    Article  CAS  PubMed  Google Scholar 

  • Cohen MR, Newsome WT (2009) Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. J Neurosci 29(20):6635–6648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erlhagen W, Schöner G (2002) Dynamic field theory of movement preparation. Psychol Rev 109:545–572

    Article  PubMed  Google Scholar 

  • Erlhagen W, Bastian A, Jancke D, Riehle A, Schöner G (1999) The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods 94:53–66

    Article  CAS  PubMed  Google Scholar 

  • Erlhagen W, Mukovskiy A, Bicho E (2006) A dynamic model for action understanding and goal-directed imitation. Brain Res 1083(1):174–188

    Article  CAS  PubMed  Google Scholar 

  • Fix J, Rougier N, Alexandre F (2011) A dynamic neural field approach to the covert and overt deployment of spatial attention. Cognit Comput 3(1):279–293

    Article  Google Scholar 

  • Fuster JM (2005) Cortex and mind – unifying cognition. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hock HS, Schöner G, Giese MA (2003) The dynamical foundations of motion pattern formation: stability, selective adaptation, and perceptual continuity. Percept Psychophys 65:429–457

    Article  PubMed  Google Scholar 

  • Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A et al (1999) Parametric population representation of retinal location: {N}euronal interaction dynamics in cat primary visual cortex. J Neurosci 19:9016–9028

    CAS  PubMed  Google Scholar 

  • Johnson JS, Spencer JP, Schöner G (2008) Moving to higher ground: the dynamic field theory and the dynamics of visual cognition. New Ideas Psychol 26:227–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson JS, Spencer JP, Luck SJ, Schöner G (2009) A dynamic neural field model of visual working memory and change detection. Psychol Sci 20:568–577

    Article  PubMed Central  PubMed  Google Scholar 

  • Kopecz K, Schöner G (1995) Saccadic motor planning by integrating visual information and pre-information on neural, dynamic fields. Biol Cybern 73:49–60

    Article  CAS  PubMed  Google Scholar 

  • Lipinski J, Schneegans S, Sandamirskaya Y, Spencer JP, Schöner G (2012) A neuro-behavioral model of flexible spatial language behaviors. J Exp Psychol Learn Mem Cogn 38(6):1490–1511

    Article  PubMed Central  PubMed  Google Scholar 

  • Markounikau V, Igel C, Grinvald A, Jancke D (2010) A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging. PLoS Comput Biol 6(9):e1000919

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin V, Scholz JP, Schöner G (2009) Redundancy, self-motion and motor control. Neural Comput 21(5):1371–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClelland JL, Rogers TT (2003) The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci 4(4):310–322

    Article  CAS  PubMed  Google Scholar 

  • Perone S, Spencer JP (2013) Autonomy in action: linking the act of looking to memory formation in infancy via dynamic neural fields. Cognit Sci 37(1):1–60

    Article  Google Scholar 

  • Riegler A (2002) When is a cognitive system embodied? Cognit Syst Res 3:339–348

    Article  Google Scholar 

  • Sandamirskaya Y (2014) Dynamic neural fields as a step toward cognitive neuromorphic architectures. Front Neurosci 7

    Google Scholar 

  • Sandamirskaya Y, Schöner G (2010) An embodied account of serial order: how instabilities drive sequence generation. Neural Netw 23(10):1164–1179

    Article  PubMed  Google Scholar 

  • Sandamirskaya Y, Zibner SK, Schneegans S, Schöner G (2013) Using dynamic field theory to extend the embodiment stance toward higher cognition. New Ideas Psychol 31(3):322–339

    Article  Google Scholar 

  • Schneegans S, Schöner G (2008) Dynamic field theory as a framework for understanding embodied cognition. In: Calvo P, Gomila T (eds) Handbook of cognitive science: an embodied approach. Elsevier, Amsterdam/Boston/London, pp 241–271

    Chapter  Google Scholar 

  • Schöner G, Thelen E (2006) Using dynamic field theory to rethink infant habituation. Psychol Rev 113(2):273–299

    Article  PubMed  Google Scholar 

  • Simons DJ, Levin DT (1997) Change blindness. Trends Cogn Sci 1(7):261–267

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP, Schöner G (2003) Bridging the representational gap in the dynamical systems approach to development. Dev Sci 6:392–412

    Article  Google Scholar 

  • Spencer JP, Simmering VR, Schutte AR (2006) Toward a formal theory of flexible spatial behavior: geometric category biases generalize across pointing and verbal response types. J Exp Psychol Hum Percept Perform 32(2):473–490

    Article  PubMed  Google Scholar 

  • Spencer JP, Perone S, Johnson JS (2009) Dynamic field theory and embodied cognitive dynamics. In: Spencer J, Thomas M, McClelland J (eds) Toward a unified theory of development: connectionism and dynamic systems theory re-considered. Oxford University Press, Oxford, pp 86–118

    Google Scholar 

  • Thelen E, Schöner G, Scheier C, Smith L (2001) The dynamics of embodiment: a field theory of infant perseverative reaching. Brain Behav Sci 24:1–33

    Article  CAS  Google Scholar 

  • Trappenberg T (2008) Decision making and population decoding with strongly inhibitory neural field models. In: Heinke D, Mavritsak E (eds) Computational modelling in behavioural neuroscience: closing the gap between neurophysiology and behaviour. Psychology Press, London, pp 1–19

    Google Scholar 

  • Trappenberg T, Dorris MC, Munoz DP, Klein RM (2001) A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci 13(2):256–271

    Article  CAS  PubMed  Google Scholar 

  • Zibner SKU, Faubel C, Iossifidis I, Schöner G (2011) Dynamic neural fields as building blocks for a cortex-inspired architecture of robotic scene representation. IEEE Trans Auton Ment Dev 3(1):74–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Schöner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Schöner, G. (2014). Embodied Cognition, Dynamic Field Theory of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics