Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Software for Neuroimaging Data Analysis

  • Jean Baptiste PolineEmail author
  • David Kennedy
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_538-1


Software is defined by as “a plan specification composed of a series of instructions that can be interpreted by or directly executed by a processing unit.” We define Software for Neuroimaging Data Analysis as software whose primary goal is to support the extraction of information, and ultimately knowledge, from data acquired by an imaging device used on the brain (of human or animal subjects).

Detailed Description


Tell us what you think about neuroimaging software, and we will tell you who you are. To some, using software to analyze data is little more than a technical step that stands between data acquisition and publishing. Doctoral students, postdocs, or technical assistants only need to operate the appropriate software, i.e., the script to run or the right sequence of buttons to press. To others, choosing, adapting, running, or developing the right software code is critical and requires investing significant time and resources.

Data analysis is one of the...


Application Program Interface Software Platform Software Option Pull Request Amazon Elastic Compute Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Ad-Dab’bagh Y, Lyttelton O, Muehlboeck JS, Lepage C, Einarson D, Mok K, Ivanov O, Vincent RD, Lerch J, Fombonne E (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Proceedings of the 12th annual meeting of the organization for human brain mapping, M. Corbetta, p S45Google Scholar
  2. Amazon. Amazon Elastic Compute Cloud (EC2) (n.d.) http://aws.amazon.com/ec2
  3. Amazon. Amazon Web Service (AWS) (n.d.) http://aws.amazon.com/.
  4. Ashburner J (2012) SPM: a history. Neuroimage 62(2):791–800. doi:10.1016/j.neuroimage.2011.10.025PubMedCrossRefGoogle Scholar
  5. Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC (2010) The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3):2457–2466. doi:10.1016/j.neuroimage.2009.09.062PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baggerly KA, Coombes KR (2009) Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. Ann Appl Stat 3(4):1309–1334. doi:10.1214/09-AOAS291CrossRefGoogle Scholar
  7. Baillet S, Karl F, Robert O (2011) Academic software applications for electromagnetic brain mapping using MEG and EEG. Comput Intell Neurosci. doi:10.1155/2011/972050Google Scholar
  8. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483(7391):531–533PubMedCrossRefGoogle Scholar
  9. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739. doi:10.1073/pnas.0911855107PubMedCentralPubMedCrossRefGoogle Scholar
  10. Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS et al (2013) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. doi:10.1038/mp.2013.78PubMedGoogle Scholar
  11. Donoho DL (2010) An invitation to reproducible computational research. Biostatistics 11(3):385–388. doi:10.1093/biostatistics/kxq028PubMedCrossRefGoogle Scholar
  12. Donoho DL, Maleki A, Rahman IU, Shahram M, Stodden V (2009) Reproducible research in computational harmonic analysis. Comput Sci Eng 11(1):8–18CrossRefGoogle Scholar
  13. Ed Gronenschild HBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, Marcelis M (2012) The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One 7(6):e38234. doi:10.1371/journal.pone.0038234PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781. doi:10.1016/j.neuroimage.2012.01.021PubMedCentralPubMedCrossRefGoogle Scholar
  15. Goebel R (1996) BRAINVOYAGER: a program for analyzing and visualizing functional and structural magnetic resonance data sets. Neuroimage 3(3):S604. doi:10.1016/S1053-8119(96)80606-9CrossRefGoogle Scholar
  16. Halchenko YO, Hanke M (2012) Open is not enough. Let’s take the next step: an integrated, community-driven computing platform for neuroscience. Front Neuroinf 6:22. doi:10.3389/fninf.2012.00022CrossRefGoogle Scholar
  17. Hall D, Huerta MF, McAuliffe MJ, Farber GK (2012) Sharing heterogeneous data: the national database for autism research. Neuroinformatics 10(4):331–339PubMedCrossRefGoogle Scholar
  18. Hanke M, Halchenko YO (2011) Neuroscience runs on GNU/Linux. Front Neuroinf 5:8. doi:10.3389/fninf.2011.00008CrossRefGoogle Scholar
  19. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2(8):e124. doi:10.1371/journal.pmed.0020124PubMedCentralPubMedCrossRefGoogle Scholar
  20. Jenkinson M, Beckmann CF, Behrens TEF, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790. doi:10.1016/j.neuroimage.2011.09.015PubMedCrossRefGoogle Scholar
  21. Kennedy DN, Haselgrove C, Buccigrossi R, Grethe J (2009) Software development for neuroimaging: promoting community access and best practices through NITRC. In: Biomedical imaging: from nano to macro, 2009. ISBI’09. IEEE international symposium on, IEEE, pp 1146–1149. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5193260
  22. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802. doi:10.1016/j.neuroimage.2008.12.037PubMedCentralPubMedCrossRefGoogle Scholar
  23. Luo XZJ, Kennedy DN (2009) Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinformatics 7:55–56. doi:10.1385/NIPubMedCrossRefGoogle Scholar
  24. Marcus DS, Olsen TR, Ramaratnam M, Buckner RL (2007) The extensible neuroimaging archive toolkit. Neuroinformatics 5(1):11–33PubMedGoogle Scholar
  25. Mennes M, Biswal BB, Xavier Castellanos F, Milham MP (2013) Making data sharing work: the FCP/INDI experience. Neuroimage 82:683–691. doi:10.1016/j.neuroimage.2012.10.064PubMedCrossRefGoogle Scholar
  26. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer Dementia 1(1):55–66CrossRefGoogle Scholar
  27. Ou Y, Sotiras A, Paragios N, Davatzikos C (2011) DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med Image Anal 15(4):622–639. doi:10.1016/j.media.2010.07.002PubMedCentralPubMedCrossRefGoogle Scholar
  28. Poline J-B, Breeze JL, Ghosh S, Gorgolewski K, Halchenko YO, Hanke M, Haselgrove C et al (2012) Data sharing in neuroimaging research. Front Neuroinf 6:1–13. doi:10.3389/fninf.2012.00009Google Scholar
  29. Raymond E (1999) The cathedral and the bazaar. Knowl Technol Policy 12(3):23–49. doi:10.1007/s12130-999-1026-0CrossRefGoogle Scholar
  30. Simmons JP, Nelson LD, Simonsohn U (2011) False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci 22(11):1359–1366. doi:10.1177/0956797611417632PubMedCrossRefGoogle Scholar
  31. The ADHD-200 Consortium (2012) The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62. doi:10.3389/fnsys.2012.00062PubMedCentralGoogle Scholar
  32. Toussaint N, Souplet JC, Fillard P (2007) MedINRIA: medical image navigation and research tool by INRIA. In: Proceedings of MICCAI, vol 7. http://med.inria.fr/
  33. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633PubMedCrossRefGoogle Scholar

Further Reading

  1. Gray WR, Bogovic JA, Vogelstein JT, Landman BA, Prince JL, Vogelstein RJ (2012) Magnetic resonance connectome automated pipeline: an overview. IEEE Pulse 3(2):42–48. doi:10.1109/MPUL.2011.2181023PubMedCrossRefGoogle Scholar
  2. Johnson H, Harris G, Williams K (2007) BRAINSFit: mutual information rigid registrations of whole-brain 3D images, using the insight toolkit. http://www.insight-journal.org/download/pdf/8169/BRAINSFit.pdf

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Henry H. Wheeler, Jr. Brain Imaging Center, Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Psychiatry, Division of NeuroinformaticsUniversity of Massachusetts Medical CenterWorcesterUSA