Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Connectivity Analysis in Normal and Pathological Brains

  • Claus C. HilgetagEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_532-1

Synonyms

Definition

Connectivity analysis focuses on the neural network basis of the brain and characterizes topological and other aspects of brain network organization that appear relevant for understanding normal and pathological brain function.

Detailed Description

Brains as Networks

The network perspective of the brain integrates aspects of local versus distributed brain function, combining segregation and integration of components. Brain connectivity can be intuitively represented as graphs, where nodes represent neural elements, ranging in scale from individual cells to large-scale neural populations (e.g., cortical areas) and links, representing structural or functional associations between the nodes. This simplifying approach is based on the assumption that neural elements are intrinsically homogeneous and that their interactions are determined by anatomical connections.

Several types of connectivity can be distinguished (Friston 2004...

Keywords

Degree Distribution Brain Network Neural Element Brain Connectivity Average Short Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198PubMedCrossRefGoogle Scholar
  3. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMedGoogle Scholar
  4. Chen Y, Wang S, Hilgetag CC, Zhou C (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9(3):e1002937PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W, Shih C-T, Wu J-J, Wang G-T, Chen Y-C, Wu C-C, Chen G-Y, Ching Y-T, Lee P-C, Lin C-Y, Lin H-H, Wu C-C, Hsu H-W, Huang Y-A, Chen J-Y, Chiang H-J, Lu C-F, Ni R-F, Yeh C-Y, Hwang J-K (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21(1):1–11PubMedCrossRefGoogle Scholar
  6. de Reus MA, van den Heuvel MP (2013) The parcellation-based connectome: limitations and extensions. Neuroimage 80:397–404PubMedCrossRefGoogle Scholar
  7. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47 (New York, NY: 1991)PubMedCrossRefGoogle Scholar
  8. Friston KJ (2004) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78Google Scholar
  9. Geschwind N (1965) Disconnexion syndromes in animals and man. I. Brain J Neurol 88(2):237–294CrossRefGoogle Scholar
  10. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Van Wedeen J, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):1479–1493CrossRefGoogle Scholar
  11. Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907PubMedCrossRefGoogle Scholar
  12. Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7):e95PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kötter R, Stephan KE (2003) Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw 16(9):1261–1275PubMedCrossRefGoogle Scholar
  14. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36PubMedCentralPubMedCrossRefGoogle Scholar
  15. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science (NY) 303(5663):1538–1542CrossRefGoogle Scholar
  16. Müller-Linow M, Hilgetag CC, Hutt M-T (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000190PubMedCentralPubMedCrossRefGoogle Scholar
  17. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069PubMedCrossRefGoogle Scholar
  18. Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4):2068–2079PubMedCrossRefGoogle Scholar
  19. Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–299 (New York, NY: 1991)PubMedCrossRefGoogle Scholar
  20. Sporns O (2011) The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci 5:5PubMedCentralPubMedCrossRefGoogle Scholar
  21. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425PubMedCrossRefGoogle Scholar
  22. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  23. Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35(3):509–527PubMedCentralPubMedCrossRefGoogle Scholar
  24. Stobb M, Peterson JM, Mazzag B, Gahtan E (2012) Graph theoretical model of a sensorimotor connectome in zebrafish. PLoS ONE 7(5):e37292PubMedCentralPubMedCrossRefGoogle Scholar
  25. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066PubMedCentralPubMedCrossRefGoogle Scholar

Further Reading

  1. Sporns O (2011) Networks of the brain. MIT Press, CambridgeGoogle Scholar
  2. Special issue: connectivity (2012) NeuroImage 62(4). http://www.sciencedirect.com/science/journal/10538119/62
  3. Special issue: the connectome (2013) Trends Cognit Sci 17(12). http://www.sciencedirect.com/science/journal/13646613/17

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computational Neuroscience, University Medical Center EppendorfHamburg UniversityHamburgGermany
  2. 2.Department of Health SciencesBoston UniversityBostonUSA