Skip to main content

Connectivity Analysis in Normal and Pathological Brains

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 203 Accesses

Synonyms

Connectomics; Graph analysis; Network science

Definition

Connectivity analysis focuses on the neural network basis of the brain and characterizes topological and other aspects of brain network organization that appear relevant for understanding normal and pathological brain function.

Detailed Description

Brains as Networks

The network perspective of the brain integrates aspects of local versus distributed brain function, combining segregation and integration of components. Brain connectivity can be intuitively represented as graphs, where nodes represent neural elements, ranging in scale from individual cells to large-scale neural populations (e.g., cortical areas) and links, representing structural or functional associations between the nodes. This simplifying approach is based on the assumption that neural elements are intrinsically homogeneous and that their interactions are determined by anatomical connections.

Several types of connectivity can be distinguished (Friston 2004...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • Chen Y, Wang S, Hilgetag CC, Zhou C (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9(3):e1002937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W, Shih C-T, Wu J-J, Wang G-T, Chen Y-C, Wu C-C, Chen G-Y, Ching Y-T, Lee P-C, Lin C-Y, Lin H-H, Wu C-C, Hsu H-W, Huang Y-A, Chen J-Y, Chiang H-J, Lu C-F, Ni R-F, Yeh C-Y, Hwang J-K (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • de Reus MA, van den Heuvel MP (2013) The parcellation-based connectome: limitations and extensions. Neuroimage 80:397–404

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47 (New York, NY: 1991)

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (2004) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78

    Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. I. Brain J Neurol 88(2):237–294

    Article  CAS  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Van Wedeen J, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):1479–1493

    Article  CAS  Google Scholar 

  • Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907

    Article  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7):e95

    Article  PubMed Central  PubMed  Google Scholar 

  • Kötter R, Stephan KE (2003) Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw 16(9):1261–1275

    Article  PubMed  Google Scholar 

  • Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science (NY) 303(5663):1538–1542

    Article  CAS  Google Scholar 

  • Müller-Linow M, Hilgetag CC, Hutt M-T (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000190

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4):2068–2079

    Article  PubMed  Google Scholar 

  • Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–299 (New York, NY: 1991)

    Article  CAS  PubMed  Google Scholar 

  • Sporns O (2011) The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425

    Article  PubMed  Google Scholar 

  • Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35(3):509–527

    Article  PubMed Central  PubMed  Google Scholar 

  • Stobb M, Peterson JM, Mazzag B, Gahtan E (2012) Graph theoretical model of a sensorimotor connectome in zebrafish. PLoS ONE 7(5):e37292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus C. Hilgetag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hilgetag, C.C. (2014). Connectivity Analysis in Normal and Pathological Brains. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_532-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_532-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics