Skip to main content

Kinetic Models for PET/SPECT Imaging

  • Living reference work entry
  • First Online:

Synonyms

Compartment model for nuclear medicine; Kinetic analysis for PET/SPECT imaging

Definition

PET/SPECT is an in vivo imaging technique used to quantitate the biodistribution of specific molecules labeled with radioisotopes termed radiotracers, radiopharmaceuticals, or radioligands. A kinetic model is a mathematical expression of the kinetics of radiotracers between compartments, usually defined as the virtual chamber of organs/tissues or as states of the radiotracer. The influx or efflux rate of the radiotracer concentration between compartments is expressed as the product of the concentration of the radiotracer and the transfer constant and is known as the rate constant. Applying the numerical time course of the radiotracer concentration, arranged by the kinetic model to measure the dynamic PET/SPECT images, the rate constant between compartments, or the combined rate constants can be mathematically estimated as a physiological function. These physiological parameters can be...

This is a preview of subscription content, log in via an institution.

References

  • Akaike H (1987) Factor analysis and AIC. Phychometrika 52(3):317–332

    Article  Google Scholar 

  • Bacskai BJ et al (2002) Imaging amyloid-beta deposits in vivo. J Cereb Blood Flow Metab 22(9):1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305

    Article  CAS  PubMed  Google Scholar 

  • Farde L et al (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET – a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Article  CAS  PubMed  Google Scholar 

  • Gunn RN et al (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287

    Article  CAS  PubMed  Google Scholar 

  • Gunn RN et al (1998) Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 8(4):426–440

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47(2):302–312

    CAS  PubMed  Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 (15)O. I. Theory and error analysis. J Nucl Med 24(9):782–789

    CAS  PubMed  Google Scholar 

  • Ichise M et al (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22(10):1271–1281

    Article  PubMed  Google Scholar 

  • Ichise M et al (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23(9):1096–1112

    Article  PubMed  Google Scholar 

  • Iida H et al (1998) Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med 39(10):1789–1798

    CAS  PubMed  Google Scholar 

  • Ikoma Y et al (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [(11)C]DAA1106. J Cereb Blood Flow Metab 27(1):173–184

    Article  CAS  PubMed  Google Scholar 

  • Innis RB et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Ishizu K et al (1996) Extraction and retention of technetium-99m-ECD in human brain: dynamic SPECT and oxygen-15-water PET studies. J Nucl Med 37(10):1600–1604

    CAS  PubMed  Google Scholar 

  • Ito H et al (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18(9):941–950

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Schnabel JA, Gunn RN (2013) A generalised spatio-temporal registration framework for dynamic PET data: application to neuroreceptor imaging. Med Image Comput Comput Assist Interv 16(Pt 1):211–218

    PubMed  Google Scholar 

  • Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49(580):339–343

    Article  CAS  PubMed  Google Scholar 

  • Kudomi N et al (2009) Parametric renal blood flow imaging using [15O]H2O and PET. Eur J Nucl Med Mol Imaging 36(4):683–691

    Article  PubMed  Google Scholar 

  • Kuhl DE et al (1982) Quantifying local cerebral blood flow by N-isopropyl-p-[123I]iodoamphetamine (IMP) tomography. J Nucl Med 23(3):196–203

    CAS  PubMed  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by133Xenon inhalation and emission tomography. Stroke 12(3):284–288

    Article  CAS  PubMed  Google Scholar 

  • Leenders KL et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1):27–47

    Article  PubMed  Google Scholar 

  • Logan J et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747

    Article  CAS  PubMed  Google Scholar 

  • Logan J et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840

    Article  CAS  PubMed  Google Scholar 

  • Meyer GJ et al (1984) Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of15O-labeled water. Eur J Nucl Med 9(5):220–228

    Article  CAS  PubMed  Google Scholar 

  • More JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory, in numerical analysis. Springer, Berlin/Heidelberg, pp 105–116

    Google Scholar 

  • Naganawa M et al (2005) Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 52(2):201–210

    Article  PubMed  Google Scholar 

  • Naganawa M et al (2008) Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging. Neuroimage 40(1):26–34

    Article  PubMed  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Phelps ME et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6(5):371–388

    Article  CAS  PubMed  Google Scholar 

  • Qiu P et al (2009) An activity-subspace approach for estimating the integrated input function and relative distribution volume in PET parametric imaging. IEEE Trans Inf Technol Biomed 13(1):25–36

    Article  PubMed  Google Scholar 

  • Raichle ME et al (1983) Brain blood flow measured with intravenous H2 (15)O. II. Implementation and validation. J Nucl Med 24(9):790–798

    CAS  PubMed  Google Scholar 

  • Reivich M et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    CAS  PubMed  Google Scholar 

  • Schain M et al (2013) Arterial input function derived from pairwise correlations between PET-image voxels. J Cereb Blood Flow Metab 33(7):1058–1065

    Article  CAS  PubMed  Google Scholar 

  • Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Q J Nucl Med 46(1):70–85

    CAS  PubMed  Google Scholar 

  • Seibyl JP et al (1992) Dynamic SPECT imaging of dopamine D2 receptors in human subjects with iodine-123-IBZM. J Nucl Med 33(11):1964–1971

    CAS  PubMed  Google Scholar 

  • van den Hoff J et al (1993) Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 34(10):1770–1777

    PubMed  Google Scholar 

  • Wagner HN Jr (1986) Quantitative imaging of neuroreceptors in the living human brain. Semin Nucl Med 16(1):51–62

    Article  PubMed  Google Scholar 

  • Watabe H et al (2005) Parametric imaging of myocardial blood flow with15O-water and PET using the basis function method. J Nucl Med 46(7):1219–1224

    PubMed  Google Scholar 

  • Watabe H et al (2006) PET kinetic analysis–compartmental model. Ann Nucl Med 20(9):583–588

    Article  CAS  PubMed  Google Scholar 

  • Wu HM et al (1995) Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 36(9):1714–1722

    CAS  PubMed  Google Scholar 

  • Yokoi T et al (1993) A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 34(3):498–505

    CAS  PubMed  Google Scholar 

  • Zanotti-Fregonara P et al (2012) Population-based input function and image-derived input function for [(11)C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage 63(3):1532–1541

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho Shidahara Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Shidahara, M., Watabe, H., Kanno, I. (2014). Kinetic Models for PET/SPECT Imaging. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_526-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_526-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics