Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Kinetic Models for PET/SPECT Imaging

  • Miho Shidahara
  • Hiroshi Watabe
  • Iwao Kanno
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_526-1



PET/SPECT is an in vivo imaging technique used to quantitate the biodistribution of specific molecules labeled with radioisotopes termed radiotracers, radiopharmaceuticals, or radioligands. A kinetic model is a mathematical expression of the kinetics of radiotracers between compartments, usually defined as the virtual chamber of organs/tissues or as states of the radiotracer. The influx or efflux rate of the radiotracer concentration between compartments is expressed as the product of the concentration of the radiotracer and the transfer constant and is known as the rate constant. Applying the numerical time course of the radiotracer concentration, arranged by the kinetic model to measure the dynamic PET/SPECT images, the rate constant between compartments, or the combined rate constants can be mathematically estimated as a physiological function. These physiological parameters can be...


Compartment Model Binding Potential Reference Region Arterial Input Function Radioactivity Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Akaike H (1987) Factor analysis and AIC. Phychometrika 52(3):317–332CrossRefGoogle Scholar
  2. Bacskai BJ et al (2002) Imaging amyloid-beta deposits in vivo. J Cereb Blood Flow Metab 22(9):1035–1041PubMedCrossRefGoogle Scholar
  3. Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305PubMedCrossRefGoogle Scholar
  4. Farde L et al (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET – a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708PubMedCrossRefGoogle Scholar
  5. Gunn RN et al (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287PubMedCrossRefGoogle Scholar
  6. Gunn RN et al (1998) Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 8(4):426–440PubMedCrossRefGoogle Scholar
  7. Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47(2):302–312PubMedGoogle Scholar
  8. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 (15)O. I. Theory and error analysis. J Nucl Med 24(9):782–789PubMedGoogle Scholar
  9. Ichise M et al (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22(10):1271–1281PubMedCrossRefGoogle Scholar
  10. Ichise M et al (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23(9):1096–1112PubMedCrossRefGoogle Scholar
  11. Iida H et al (1998) Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med 39(10):1789–1798PubMedGoogle Scholar
  12. Ikoma Y et al (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [(11)C]DAA1106. J Cereb Blood Flow Metab 27(1):173–184PubMedCrossRefGoogle Scholar
  13. Innis RB et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539PubMedCrossRefGoogle Scholar
  14. Ishizu K et al (1996) Extraction and retention of technetium-99m-ECD in human brain: dynamic SPECT and oxygen-15-water PET studies. J Nucl Med 37(10):1600–1604PubMedGoogle Scholar
  15. Ito H et al (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18(9):941–950PubMedCrossRefGoogle Scholar
  16. Jiao J, Schnabel JA, Gunn RN (2013) A generalised spatio-temporal registration framework for dynamic PET data: application to neuroreceptor imaging. Med Image Comput Comput Assist Interv 16(Pt 1):211–218PubMedGoogle Scholar
  17. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49(580):339–343PubMedCrossRefGoogle Scholar
  18. Kudomi N et al (2009) Parametric renal blood flow imaging using [15O]H2O and PET. Eur J Nucl Med Mol Imaging 36(4):683–691PubMedCrossRefGoogle Scholar
  19. Kuhl DE et al (1982) Quantifying local cerebral blood flow by N-isopropyl-p-[123I]iodoamphetamine (IMP) tomography. J Nucl Med 23(3):196–203PubMedGoogle Scholar
  20. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158PubMedCrossRefGoogle Scholar
  21. Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by133Xenon inhalation and emission tomography. Stroke 12(3):284–288PubMedCrossRefGoogle Scholar
  22. Leenders KL et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1):27–47PubMedCrossRefGoogle Scholar
  23. Logan J et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747PubMedCrossRefGoogle Scholar
  24. Logan J et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840PubMedCrossRefGoogle Scholar
  25. Meyer GJ et al (1984) Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of15O-labeled water. Eur J Nucl Med 9(5):220–228PubMedCrossRefGoogle Scholar
  26. More JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory, in numerical analysis. Springer, Berlin/Heidelberg, pp 105–116Google Scholar
  27. Naganawa M et al (2005) Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 52(2):201–210PubMedCrossRefGoogle Scholar
  28. Naganawa M et al (2008) Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging. Neuroimage 40(1):26–34PubMedCrossRefGoogle Scholar
  29. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313CrossRefGoogle Scholar
  30. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7PubMedCrossRefGoogle Scholar
  31. Phelps ME et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6(5):371–388PubMedCrossRefGoogle Scholar
  32. Qiu P et al (2009) An activity-subspace approach for estimating the integrated input function and relative distribution volume in PET parametric imaging. IEEE Trans Inf Technol Biomed 13(1):25–36PubMedCrossRefGoogle Scholar
  33. Raichle ME et al (1983) Brain blood flow measured with intravenous H2 (15)O. II. Implementation and validation. J Nucl Med 24(9):790–798PubMedGoogle Scholar
  34. Reivich M et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137PubMedCrossRefGoogle Scholar
  35. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210PubMedGoogle Scholar
  36. Schain M et al (2013) Arterial input function derived from pairwise correlations between PET-image voxels. J Cereb Blood Flow Metab 33(7):1058–1065PubMedCrossRefGoogle Scholar
  37. Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Q J Nucl Med 46(1):70–85PubMedGoogle Scholar
  38. Seibyl JP et al (1992) Dynamic SPECT imaging of dopamine D2 receptors in human subjects with iodine-123-IBZM. J Nucl Med 33(11):1964–1971PubMedGoogle Scholar
  39. van den Hoff J et al (1993) Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 34(10):1770–1777PubMedGoogle Scholar
  40. Wagner HN Jr (1986) Quantitative imaging of neuroreceptors in the living human brain. Semin Nucl Med 16(1):51–62PubMedCrossRefGoogle Scholar
  41. Watabe H et al (2005) Parametric imaging of myocardial blood flow with15O-water and PET using the basis function method. J Nucl Med 46(7):1219–1224PubMedGoogle Scholar
  42. Watabe H et al (2006) PET kinetic analysis–compartmental model. Ann Nucl Med 20(9):583–588PubMedCrossRefGoogle Scholar
  43. Wu HM et al (1995) Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 36(9):1714–1722PubMedGoogle Scholar
  44. Yokoi T et al (1993) A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 34(3):498–505PubMedGoogle Scholar
  45. Zanotti-Fregonara P et al (2012) Population-based input function and image-derived input function for [(11)C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage 63(3):1532–1541PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Medical PhysicsTohoku University School of MedicineSendaiJapan
  2. 2.Division of Radiation Protection and Safety Control, Cyclotron Radioisotope CenterTohoku UniversitySendaiJapan
  3. 3.Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan