Skip to main content

Optogenetics

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 248 Accesses

Definition

Optogenetic tools are a broad class of genetically engineered proteins activated or inactivated by light of an appropriate wavelength. These include activators, such as the Channelrhodopsins, and suppressors, such as the Halorhodopsins and Archaerhodopsins, along with other variants.

Detailed Description

Microbial Opsins

Many of the optogenetic tools currently in use in mammalian systems are derived from microbial opsins. These generally incorporate light-sensing and ion flux components in the same protein, as in Bacteriorhodopsin (Oesterhelt and Stoeckenius 1971), Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) (Nagel et al. 2002, 2003), and Halorhodopsin (eNpHR) (Gradinaru et al. 2008; Han and Boyden 2007; Zhang et al. 2007). In response to light stimulation, the Channelrhodopsins undergo conformational changes and allow nonspecific cation flow, resulting in depolarization and increased action potential output (Bamann et al. 2010; Hegemann et al. 2005; Kato et al. 2012...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  • Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490:226–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  • Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5:247–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340:759–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruikshank SJ, Lewis TJ, Connors BW (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10:462–468

    CAS  PubMed  Google Scholar 

  • Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K et al (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27:14231–14238

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed Central  PubMed  Google Scholar 

  • Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89:3911–3918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M et al (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086–15091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn I, Knoblich U, Desai M, Bernstein J, Graybiel AM et al (2013) Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res 1511:33–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed  Google Scholar 

  • Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kravitz AV, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lima SQ, Hromadka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4:e6099

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  • Packer AM, Peterka DS, Hirtz JJ, Prakash R, Deisseroth K, Yuste R (2012) Two-photon optogenetics of dendritic spines and neural circuits. Nat Methods 9:1202–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    Article  CAS  PubMed  Google Scholar 

  • Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC et al (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16:1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Prakash R, Yizhar O, Grewe B, Ramakrishnan C, Wang N et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Schoenenberger P, Scharer YP, Oertner TG (2011) Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 96:34–39

    Article  PubMed  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urban A, Rancillac A, Martinez L, Rossier J (2012) Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV::Cre transgenic mice. Front Pharmacol 3:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:343–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4:139–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. Cardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cardin, J.A. (2014). Optogenetics. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_524-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_524-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics