Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Optogenetics

  • Jessica A. Cardin
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_524-1

Definition

Optogenetic tools are a broad class of genetically engineered proteins activated or inactivated by light of an appropriate wavelength. These include activators, such as the Channelrhodopsins, and suppressors, such as the Halorhodopsins and Archaerhodopsins, along with other variants.

Detailed Description

Microbial Opsins

Many of the optogenetic tools currently in use in mammalian systems are derived from microbial opsins. These generally incorporate light-sensing and ion flux components in the same protein, as in Bacteriorhodopsin (Oesterhelt and Stoeckenius 1971), Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) (Nagel et al. 2002, 2003), and Halorhodopsin (eNpHR) (Gradinaru et al. 2008; Han and Boyden 2007; Zhang et al. 2007). In response to light stimulation, the Channelrhodopsins undergo conformational changes and allow nonspecific cation flow, resulting in depolarization and increased action potential output (Bamann et al. 2010; Hegemann et al. 2005; Kato et al. 2012...

Keywords

Bold Signal Inhibitory Interneuron Optical Manipulation Opsin Expression Action Potential Waveform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424PubMedCrossRefGoogle Scholar
  2. Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155–1160PubMedCentralPubMedCrossRefGoogle Scholar
  3. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490:226–231PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156PubMedCrossRefGoogle Scholar
  5. Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170PubMedCentralPubMedCrossRefGoogle Scholar
  6. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278PubMedCrossRefGoogle Scholar
  8. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234PubMedCrossRefGoogle Scholar
  9. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268PubMedCrossRefGoogle Scholar
  10. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat Protoc 5:247–254PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340:759–762PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chow BY, Han X, Dobry AS, Qian X, Chuong AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cruikshank SJ, Lewis TJ, Connors BW (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10:462–468PubMedGoogle Scholar
  15. Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405PubMedCentralPubMedCrossRefGoogle Scholar
  16. Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K et al (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27:14231–14238PubMedCrossRefGoogle Scholar
  18. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392PubMedCrossRefGoogle Scholar
  20. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299PubMedCentralPubMedCrossRefGoogle Scholar
  21. Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198PubMedCentralPubMedCrossRefGoogle Scholar
  22. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89:3911–3918PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M et al (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086–15091PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kahn I, Knoblich U, Desai M, Bernstein J, Graybiel AM et al (2013) Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res 1511:33–45PubMedCentralPubMedGoogle Scholar
  26. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374PubMedCrossRefGoogle Scholar
  27. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346PubMedCrossRefGoogle Scholar
  28. Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579PubMedCrossRefGoogle Scholar
  29. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kravitz AV, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32PubMedCentralPubMedGoogle Scholar
  31. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lima SQ, Hromadka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4:e6099PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508PubMedCentralPubMedCrossRefGoogle Scholar
  34. Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398PubMedCrossRefGoogle Scholar
  36. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284PubMedCrossRefGoogle Scholar
  38. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152PubMedCrossRefGoogle Scholar
  39. Packer AM, Peterka DS, Hirtz JJ, Prakash R, Deisseroth K, Yuste R (2012) Two-photon optogenetics of dendritic spines and neural circuits. Nat Methods 9:1202–1205PubMedCentralPubMedCrossRefGoogle Scholar
  40. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668PubMedCrossRefGoogle Scholar
  41. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC et al (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16:1857–1863PubMedCrossRefGoogle Scholar
  43. Prakash R, Yizhar O, Grewe B, Ramakrishnan C, Wang N et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179PubMedCrossRefGoogle Scholar
  44. Schoenenberger P, Scharer YP, Oertner TG (2011) Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 96:34–39PubMedCrossRefGoogle Scholar
  45. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702PubMedCentralPubMedCrossRefGoogle Scholar
  46. Urban A, Rancillac A, Martinez L, Rossier J (2012) Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV::Cre transgenic mice. Front Pharmacol 3:105PubMedCentralPubMedCrossRefGoogle Scholar
  47. Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:343–348PubMedCentralPubMedCrossRefGoogle Scholar
  49. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178PubMedCrossRefGoogle Scholar
  50. Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4:139–141PubMedCrossRefGoogle Scholar
  51. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639PubMedCrossRefGoogle Scholar
  52. Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurobiology and Kavli InstituteYale UniversityNew HavenUSA