Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Basal Ganglia: Decision-Making

  • Wei Wei
  • Xiao-Jing Wang
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_519-1

Definition

The basal ganglia (BG) participate not only in the selection of motor plans but also in perceptual decision-making. The functional structure of the BG and their close interconnections with the cortex and dopamine system allow the BG to be actively involved in the perceptual decision-making processes.

Detailed Description

The role of the BG in perceptual decision-making processes has recently attracted much attention (Ding and Gold 2013). Although the BG were much earlier proposed to be the central substrate for action selection and habit learning (Graybiel 1995; Mink 1996; Redgrave et al. 2010), their active participation in perceptual decision-making has been investigated only more recently (Ding and Gold 2010). The BG have close interaction with the frontal cortex and the lateral intraparietal area (LIP), where are believed to be the sites of evidence accumulation in decision processes (Gold and Shadlen 2007; Huk and Shadlen 2005; Kim and Shadlen 1999). The BG also have...

Keywords

Deep Brain Stimulation Superior Colliculus Reward Rate Evidence Accumulation Superior Colliculus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Baum CW, Veeravalli VV (1994) A sequential procedure for multihypothesis testing. IEEE Trans Inform Theory 40(6):1994–2007. doi:10.1109/18.340472CrossRefGoogle Scholar
  2. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19(2):442–477. doi:10.1162/neco.2007.19.2.442PubMedCrossRefGoogle Scholar
  3. DeLong M, Wichmann T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 15(Suppl 3):S237–240. doi:10.1016/S1353-8020(09)70822-3PubMedCrossRefGoogle Scholar
  4. Ding L, Gold JI (2010) Caudate encodes multiple computations for perceptual decisions. J Neurosci 30(47):15747–15759. doi:10.1523/JNEUROSCI.2894-10.2010PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ding L, Gold JI (2013) The Basal Ganglia’s contributions to perceptual decision making. Neuron 79(4):640–649. doi:10.1016/j.neuron.2013.07.042PubMedCrossRefGoogle Scholar
  6. Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136. doi:10.1016/j.neunet.2006.03.006PubMedCrossRefGoogle Scholar
  7. Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703):1940–1943. doi:10.1126/science.1102941PubMedCrossRefGoogle Scholar
  8. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318(5854):1309–1312. doi:10.1126/science.1146157PubMedCrossRefGoogle Scholar
  9. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. doi:10.1146/annurev-neuro-061010-113641PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gold JI, Shadlen MN (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36(2):299–308PubMedCrossRefGoogle Scholar
  11. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574. doi:10.1146/annurev.neuro.29.051605.113038PubMedCrossRefGoogle Scholar
  12. Graybiel AM (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 5(6):733–741PubMedCrossRefGoogle Scholar
  13. Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6):401–410PubMedCrossRefGoogle Scholar
  14. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978PubMedGoogle Scholar
  15. Huk AC, Shadlen MN (2005) Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J Neurosci 25(45):10420–10436. doi:10.1523/JNEUROSCI.4684-04.2005PubMedCrossRefGoogle Scholar
  16. Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci 2(2):176–185. doi:10.1038/5739PubMedCrossRefGoogle Scholar
  17. Lo CC, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9(7):956–963. doi:10.1038/nn1722PubMedCrossRefGoogle Scholar
  18. Mathai A, Smith Y (2011) The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 5:64. doi:10.3389/fnsys.2011.00064PubMedCentralPubMedCrossRefGoogle Scholar
  19. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425PubMedCrossRefGoogle Scholar
  20. Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temino B, Mena-Segovia J, Olanow CW (2008) The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol 64(Suppl 2):S30–S46. doi:10.1002/ana.21481PubMedGoogle Scholar
  21. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Obeso JA (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772. doi:10.1038/nrn2915PubMedCentralPubMedCrossRefGoogle Scholar
  22. Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12(11):418–424. doi:10.1016/j.tics.2008.07.005PubMedCentralPubMedCrossRefGoogle Scholar
  23. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–968PubMedCrossRefGoogle Scholar
  24. Wiecki TV, Frank MJ (2013) A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol Rev 120(2):329–355. doi:10.1037/a0031542PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Neural ScienceNew York UniversityNew YorkUSA
  2. 2.Department of Neurobiology and Kavli Institute for NeuroscienceYale University School of MedicineNew HavenUSA