Skip to main content

Stochastic Resonance: Balance Control and Cochlear Implants

Encyclopedia of Computational Neuroscience
  • 163 Accesses

Synonyms

Noise enhancement of weak subthreshold signals

Definition

Originally discovered in climate data (Nicolis and Nicolis 1981; Nicolis 1982), the phenomenon of stochastic resonance occurs when an intermediate (i.e., neither too large nor too small) amount of noise enhances the transmission of a weak periodic signal (McNamara and Wiesenfeld 1989). More specifically, the signal-to-noise ratio of the weak periodic signal is increased by the added noise; the signal is “weak” in the sense that, in the absence of noise, it is below the threshold of detection. A low-amplitude added noise contributes jitter to the weak periodic signal, but is not sufficient to ever push the signal over the detection threshold. A large-amplitude noisy input, in contrast, adds so much jitter that, while the weak signal plus noise does often exceed the threshold, the signal is not separable from the noise (Jung and Hänggi 1991; Dykman et al. 1992). An intermediate-amplitude noisy input allows the weak...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benham SE, Zeng F-G (2003) Noise improves suprathreshold discrimination in cochlear-implant listeners. Hear Res 186:91–93

    Article  Google Scholar 

  • Burger C, Schade V, Lindner C, Radlinger L, Elfering A (2012) Stochastic resonance training reduces musculoskeletal symptoms in metal manufacturing workers: a controlled preventive intervention study. Work 42:269–278

    PubMed  Google Scholar 

  • Chatterjee M, Oba SI (2005) Noise improves modulation detection by cochlear implant listeners at moderate carrier levels. J Acoust Soc Am 118:993–1002

    Article  PubMed  Google Scholar 

  • Chatterjee M, Robert ME (2001) Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol 2:159–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins AT, Blackburn JT, Olcott CW, Jordan JM, Yu B, Weinhold PS (2012) The assessment of postural control with stochastic resonance electrical stimulation and a neoprene knee sleeve in the osteoarthritic knee. Arch Phys Med Rehabil 93:1123–1128

    Article  PubMed  Google Scholar 

  • Dykman MI, Mannella R, McClintock PV, Stocks NG (1992) Phase shifts in stochastic resonance. Phys Rev Lett 68:2985–2988

    Article  PubMed  Google Scholar 

  • Ehrenberger K, Felix D, Svozil K (1999) Stochastic resonance in cochlear signal transduction. Acta Otolaryngol 119:166–170

    Article  CAS  PubMed  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–287

    Article  CAS  Google Scholar 

  • Jung P, Hänggi P (1991) Amplification of small signals via stochastic resonance. Phys Rev A 44:8032–8042

    Article  PubMed  Google Scholar 

  • Kaut O, Allert N, Coch C, Paus S, Grzeska A, Minnerop M, Wüllner U (2011) Stochastic resonance therapy in Parkinson’s disease. NeuroRehabilitation 28:353–358

    PubMed  Google Scholar 

  • McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys Rev A 39:4854–4868

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Balbuena I, Manjarrez E, Schulte-Mönting J, Huethe F, Tapia JA, Hepp-Reymond MC, Kristeva R (2012) Improved sensorimotor performance via stochastic resonance. J Neurosci 32:12612–12618

    Article  CAS  PubMed  Google Scholar 

  • Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorffy JB, Ruiz FK, Strauss MA, Balch EC, Marin PJ, Alexander JL (2009a) Balancing with vibration: a prelude for “drift and act” balance control. PLOS One 4:e7427

    Article  PubMed Central  PubMed  Google Scholar 

  • Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA (2009b) The time-delayed inverted pendulum: implications for human balance control. Chaos 19:026110

    Article  PubMed  Google Scholar 

  • Morse RP, Evans EF (1999a) Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hear Res 133:107–119

    Article  CAS  PubMed  Google Scholar 

  • Morse RP, Evans EF (1999b) Preferential and non-preferential transmission of formant information by an analogue cochlear implant using noise: the role of the nerve threshold. Hear Res 133:120–132

    Article  CAS  PubMed  Google Scholar 

  • Moss F, Wiesenfeld K (1995) The benefits of background noise. Sci Am 273:66–69

    Article  Google Scholar 

  • Nicolis C (1982) Stochastic aspects of climatic transitions – response to a periodic forcing. Tellus 34:1–9

    Article  Google Scholar 

  • Nicolis C, Nicolis G (1981) Stochastic aspects of climatic transitions – additive fluctuations. Tellus 33:225–231

    Article  Google Scholar 

  • Pei X, Wilkens LA, Moss F (1996) Light enhances hydrodynamic signaling in the multimodal caudal photoreceptor interneurons of the crayfish. J Neurophysiol 76:3002–3011

    CAS  PubMed  Google Scholar 

  • Priplata A, Niemi J, Salen M, Harry J, Lipsitz LA, Collins JJ (2002) Noise-enhanced human balance control. Phys Rev Lett 89:238101

    Article  PubMed  Google Scholar 

  • Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ (2003) Vibrating insoles and balance control in elderly people. Lancet 362:1123–1124

    Article  PubMed  Google Scholar 

  • Rogan S, Hilfiker R, Schmid S, Radlinger L (2012) Stochastic resonance whole-body vibration training for chair rising performance on untrained elderly: a pilot study. Arch Gerontol Geriatr 55:468–473

    Article  PubMed  Google Scholar 

  • Ross SE (2007) Noise-enhanced postural stability in subjects with functional ankle instability. Br J Sports Med 41:656–659

    Article  PubMed Central  PubMed  Google Scholar 

  • Ross SE, Guskiewicz KM (2006) Effect of coordination training with and without stochastic resonance stimulation on dynamic postural stability of subjects with functional ankle instability and subjects with stable ankles. Clin J Sport Med 16:323–328

    Article  PubMed  Google Scholar 

  • Ross SE, Linens SW, Wright CJ, Arnold BL (2013) Customized noise-stimulation intensity for bipedal stability and unipedal balance deficits associated with functional ankle instability. J Athl Train 48:463–470

    Article  PubMed  Google Scholar 

  • Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78:1186–1189

    Article  CAS  Google Scholar 

  • Stocks NG, Allingham D, Morse RP (2002) The application of suprathreshold stochastic resonance to cochlear implant coding. Fluct Noise Lett 2:L169–L181

    Article  Google Scholar 

  • Stocks NG, Shulgin B, Holmes SD, Nikitin A, Morse RP (2009) Cochlear implant coding with stochastic beamforming and suprathreshold stochastic resonance. In: Applications of nonlinear dynamics. Springer, pp 237–248

    Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36

    Article  CAS  PubMed  Google Scholar 

  • Zeng F-G, Fu Q-J, Morse R (2000) Human hearing enhanced by noise. Brain Res 869:251–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonya Bahar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Bahar, S. (2013). Stochastic Resonance: Balance Control and Cochlear Implants. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_512-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_512-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Stochastic Resonance: Balance Control and Cochlear Implants
    Published:
    18 June 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_512-2

  2. Original

    Stochastic Resonance: Balance Control and Cochlear Implants
    Published:
    13 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_512-1